期刊文献+

动态模糊神经网络在变形预测中的应用 被引量:8

Application of Dynamic Fuzzy Neural Network to Deformation Prediction
下载PDF
导出
摘要 为了得到更好的桥梁墩台沉降变形预测精度,减少工程监测实践的误差,分别介绍了基于扩展径向基函数神经网络(RBFNN)与动态模糊神经网络(DFNN)的学习算法和参数的确定方法。选取某一桥梁沉降监测数据分别进行基于扩展径向基函数神经网络与动态模糊神经网络的自适应学习训练,进行桥梁墩台沉降变形预测。实例分析结果表明,径向基函数神经网络预测误差达到0.15 mm,而动态模糊神经网络预测误差达到0.07 mm,显然动态模糊神经网络具有更高的预测精度,从而证实了动态模糊技术与神经网络相结合的自适应学习训练过程的优越性。 To get better prediction precision in settlement and deformation of the bridge piers and reduce errors in project monitoring practices,the learning algorithm and determination of network parameters of dynamic fuzzy neural network(DFNN) based on extended radial basis function neural networks(RBFNN) are introduced.In the selection of subsidence monitoring data from a bridge for the adaptive learning and training based on RBFNN and DFNN,the experimental results show that the prediction error of RBFNN is about 0.15 mm,while the DFNN is about 0.07 mm.The prediction precision of DFNN is better than RBFNN.Thus the advantages of dynamic fuzzy technology and neural network are confirmed in combining adaptive learning and training process.
出处 《桂林理工大学学报》 CAS 北大核心 2011年第3期395-398,共4页 Journal of Guilin University of Technology
基金 国家自然科学基金项目(4106400151108110)
关键词 动态模糊神经网络 径向基函数神经网络 变形预测 dynamic fuzzy neural network radial basis function neural network deformation prediction
  • 相关文献

参考文献11

  • 1陈伟清,田海涛,陈佳佳.工程建筑变形分析的灰色模型探讨[J].广西大学学报(自然科学版),2011,36(1):64-70. 被引量:15
  • 2刘为东,李东升,程丕.RBFNN在大坝变形长期预测中的应用[J].水电能源科学,2011,29(1):48-50. 被引量:3
  • 3赵立中,苏道武.基坑变形曲线拟合与时序动态分析[J].山东农业大学学报(自然科学版),2010,41(1):122-124. 被引量:1
  • 4黎昵,岳建平,段鹏.改进模糊神经网络模型及其在大坝监测中的应用[J].水电自动化与大坝监测,2007,31(1):74-76. 被引量:19
  • 5Deng X S,,Wang X Z.Incremental learning of dynamic fuzzyneural networks for accurate system modeling. Fuzzy Sets and Systems . 2009
  • 6Lin D,,Wang X Y,Nian F Z,et al.Dynamic fuzzy neuralnetworks modeling and adaptive backstepping tracking controlof uncertain chaotic systems. Neurocomputing . 2010
  • 7Juang C F,Lin Y Y,Tu C C.A recurrent self-evolvingfuzzy neural network with local feedbacks and its applicationto dynamic system processing. Fuzzy Sets and Systems . 2010
  • 8P.A. Mastorocostas,J.B. Theocharis.A recurrent fuzzy-neural model for dynamic system identification. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics . 2002
  • 9Gang Leng,Girijesh Prasad,Thomas Martin McGinnity.An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Networks . 2004
  • 10Wang Ning,Meng Joo Er,Meng Xiaoyao.A fastand accurate online self-organizing scheme for parsi-monious fuzzy neural networks.. Neurocomput-ing . 2009

二级参考文献22

共引文献34

同被引文献74

引证文献8

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部