期刊文献+

基于传感网的地面运动车辆目标容错跟踪

Fault tolerant-tracking of moving vehicles using sensor networks
原文传递
导出
摘要 提出了一种新的基于声震传感网的机动目标跟踪算法,即在Rao-Blackwellized蒙特卡洛数据关联(RBMCDA)算法基础上,引入代价函数,根据代价函数的可信度和误差偏离度实时在线更新测量噪声模型参数.仿真结果表明:相比于RBMCDA算法,该算法不依赖于观测噪声的精确建模,在节点频繁切换情况下仍具有很好的自适应性;相比于代价参考粒子滤波算法,在错误测量概率达10%情况下,算法仍能精确跟踪,具有很好的收敛性和容错能力;在测量噪声方差由0.001变到0.1过程中,算法能动态调整模型参数,具有较好的鲁棒性. A tracking algorithm for moving vehicles based on acoustic and seismic sensor networks was proposed. This novel algorithm was based on Rao-Blackwellized Monte Carlo data association (RBM- CDA) algorithm, introduced cost function, and used the credibility of cost function and the error deviation to update the measurement noise model parameter online. Simulation results show that the new algorithm does not rely on the accurate model of measurement noise, and has better adaptability in case of frequent nodes switching compared with the RBMCDA algorithm; moreover, the algorithm can track accurately under 10~~ error measurement, so it has better convergence and better fault-toler- ance compared with the cost-reference particle filter algorithm; and when the measurement noise vari- ance changes from 0. 001 to 0. 1, this algorithm can dynamically adjust the model parameters with good robustness.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期6-10,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重大专项资助项目(2009ZX03006-001) 国家高技术研究发展计划资助项目(2007AA01Z2A8)
关键词 目标跟踪 无线传感器网络 错误测量 粒子滤波 代价函数 target tracking wireless sensor networks error measurement particle filter cost function
  • 相关文献

参考文献13

  • 1Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 38(4): 393-422.
  • 2Bugallo M F, Xu S, Miguez J, et al. Maneuvering target tracking using cost reference particle filtering [C] //IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal: IEEE, 2004: 968-971.
  • 3Ma Yuefang, Ng B W H. Distributive target tracking in wireless sensor networks under measurement origin uncertainty[C]// 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. Melbourne: IEEE, 2007: 299-304.
  • 4Lira J, Hong D. Cost reference particle filtering approach to high-bandwidth tilt estimation [J]. IEEE Transactions on Industrial Electronics, 2010, 57(11) : 3830-3839.
  • 5Kotecha J H, Djuric P M. Gaussian sum particle filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10):2602-2612.
  • 6Sarkka S, Vehtari A, Lampinen J. Rao-blackwellized particle filter for multiple target tracking[J]. Information Fusion, 2007, 8(1):2-15.
  • 7Sathyan T, Hedley M. Efficient particle filtering for tracking maneuvering objects[C] // Position Location and Navigation Symposium (PLANS), 2010 IEEE/ ION. Indian Wells: IEEE, 2010: 332-339.
  • 8Xu Shanshan, Bugallo M F, Djuric P M. Maneuvering target tracking with simplified cost reference particle filters[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse: IEEE, 2006: 937-940.
  • 9Skoglar P, Orguner U, Tornqvist D, et al. Road target tracking with an approximative Rao-Blackwellized particle filter[C]// 2009 FUSION '09 12th International Conference on Information Fusion. Seattle: IEEE, 2009:17-24.
  • 10Guo Wenyan, Han Chongzhao, Lei Ming. Improved unscented particle filter for nonlinear Bayesian estimation[C]// 2007 10th International Conference on Information Fusion. Quebec: IEEE, 2007: 1-6.

二级参考文献11

  • 1张卫明,张炎华,钟山.舰船GPS导航系统定位误差仿真[J].系统仿真学报,2005,17(1):57-59. 被引量:10
  • 2徐秉佑.超视距目标指示的研究与实践[J].雷达与对抗,1995,16(3):41-45. 被引量:9
  • 3Lerro D, Bar Shalom Y. T racking with debiased consistent converted measurements versus EKF[J]. IEEE Trans AES, 1993, 29(3): 1 015-1 022.
  • 4Julier S, Uhlmann J. Unscented filtering and nonlinear estimation [J]. Proceedings of IEEE, 2004, 192(3): 401-422.
  • 5Kostantinos N P, Dimitris H. Advanced signal processing handbook [M]. Boca Raton: CRC Press LLC, 2001.
  • 6Nicholson D, Deaves R. Decentralized track fusion in dynamic networks[C]//Proc SPIE signal and data processing of small target. Orlando: [s. n. ], 2000: 452-460.
  • 7Carvalho H, Heinzelman W, Murphy A, et al. A general data fusion architecture[C]//Proc 6th Int Conf Inf Fusion. Caitrns: [s. n.], 2003: 1 465- 1 472.
  • 8Li X R, Jilkov V P. Survey of maneuvering target tracking, part Ⅰ: dynamic models[J]. IEEE Trans Aerospace and Electronic Systems, 2003, 39 (4): 1 333-1 364.
  • 9Julier S J, Uhlmann J K. Handbook of Data Fusion [M]. Boca Raton: CRC Press, 2001.
  • 10Arnaud Doucet,Simon Godsill,Christophe Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering[J] 2000,Statistics and Computing(3):197~208

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部