期刊文献+

基于DRJMCMC方法处理多元正态混合模型

Analysis of multivariate Gaussian mixture model based on DRJMCMC method
下载PDF
导出
摘要 运用带延迟拒绝的可逆跳马尔科夫链蒙特卡洛方法(DRJMCMC)来研究多元混合模型的参数估计和模型选择问题.在混合元的分裂和合并过程中,依然遵照转移前后模型的一阶和二阶矩不变的原则,同时引进随机产生的正交阵解决协方差矩阵不同的问题.还给出DRJMCMC算法在多元正态混合模型中的接受概率的具体表达式.最后给出了一些模拟数据的结果来验证这个算法的可行性及优良性. The Bayesian analysis of the multivariate Gaussian mixture model using the delaying rejection reversible jump MCMC algorithm was presented,which could deal with parameter estimation and model selection jointly in a signal sweep.Adhering to the principle of preserving the first two moments before and after the split and combination,special orthogonal matrix was generated to solve the problem of constructing the covariance matrix.The acceptance probability of the DRJMCMC algorithm was given.Experimental results on several data sets demonstrate the efficacy of our algorithm.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2011年第9期764-772,共9页 JUSTC
基金 国家自然科学基金(71001095) 高等学校博士学科点专项科研基金(20103402120010) 安徽省自然科学基金(090416245)资助
关键词 多元混合模型 模型选择 带延迟拒绝的RJMCMC算法 分裂和合并过程 Gaussian mixture model model selection delaying rejection reversible jump MCMC algorithm split and combination
  • 相关文献

参考文献12

  • 1Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, Series B, 1977, 39(1):1-38.
  • 2Mengersen K, Robert C. Testing for Mixture: A Bayesian Entropy Approach [ M ]. Oxford: Oxford University Press, 1996.
  • 3Chen J, Khalili A. Order selection in finite mixture models with a nonsmoooth penahy[J]. Journal of the American Statistical Association, 2009, 104(485) :187- 196.
  • 4Fan J, Li R. Variable selection via non-concave penalized likelihood and its oracle properties [J]. Journal of the American Statistical Association, 2001, 96:1 348-1 360.
  • 5Diebolt J, Robert C P. Estimation of finite mixture distributions through Bayesian sampling[J]. Journal of the Royal Statistical Society, Series B, 1994, 5:363- 375.
  • 6Richardson S, Green P J. On Bayesian analysis of mixtures with an unknown number of components[J]. Journal of the Royal Statistical ,Society, Series B, 1997, 59:731-792.
  • 7Zhang Z, Chan K I., Wu Y, et al. Learning a multivariatc Gaussian mixture model with the reversible jump MCMC algorithm [J].Statistics and Computing, 2004, 1,1: 343-355.
  • 8Dellaportas P, Papageorgiou I. Multivariate mixture of normals with unknown number of components [J].Statistics and Computing, 2006,16:57-68.
  • 9Tierney L, Mira A. Some adaptive Monte Carlo methods for Bayesian inference [J]. Statistics in Medicine, 1999, 18:2 507 -2 515.
  • 10Mira A. On Metropolis Hastings delayed rejection[R ]. Varese, dell'Insubria, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部