期刊文献+

基于可扩展精度的Logistic混沌随机序列的并行计算方法 被引量:9

A parallel computing method of chaotic random sequence based on Logistic map with scalable precision
下载PDF
导出
摘要 在有限计算精度下的混沌特性退化问题一直是困扰数字混沌系统的关键问题.采用可扩展精度并行方法计算Logistic映射,对混沌函数进行分步计算,利用动态数组保存计算结果.基于可扩展精度计算混沌,打破了计算机内有限精度的限制,用户可以自由指定计算精度.实验结果表明,基于可扩展精度的混沌随机数列,随着精度的增加,映射空间扩大,得到的混沌序列更加接近于理想的混沌状态. The dynamical degradation of chaos with finite computing precision always troubles digital chaotic systems.A parallel method for computing the Logistic map with scalable precision was introduced;in which chaotic map was divided into several parts for computing,and the results were placed in the dynamical array.Computing chaotic map with scalable precision breaks limit of computer finite precision,allowing the user to set the computing precision freely.The experimental results show that the higher the precision is,the greater the mapping space will be,with the chaotic random sequences with scalable precision approaching the ideal state of chaos.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2011年第9期837-846,共10页 JUSTC
基金 中国高技术研究发展(863)计划(2010AA012504) 黑龙江省教育厅2011年度海外学人项目(1251H018)资助
关键词 可扩展精度 随机数列 并行算法 LOGISTIC映射 scalable precision random sequence parallel algorithm Logistic map
  • 相关文献

参考文献40

  • 1Lorenz E N. Deterministic non-periodic Atmos Sci, 1963, 20:130 -141.
  • 2Matthews R A J. On the derivation of a "chaotic" encryption algorithm [J]. Cryptologia, 1989, 13 (1) 29-42.
  • 3Wheeler D D. Problems with chaotic cryptosystems [J]. Cryptologia, 1989, 13 (3): 243- 250.
  • 4Habutsu T, Nishio Y, Sasase I, et al. A secret key cryptosystem by iterating a chaotic map[J].Lecture Notes in Computer Science, 1991, 547:127-140.
  • 5Biham E. Cryptanalysis of the chaotic-map cryptosystem suggested at EuroCrypt' 91 [J]. Lecture Notes in Computer Science, 1991, 547: 532-534.
  • 6Fridrich J, Geer J. Reconstruction of blurred under finite resolution [J].J Appl Math Comp, 71 : 227-245.
  • 7Fridrich J, Geer J. Reconstruction of chaotic under finite resolution [J]. J Appl Math Comp, 80: 129-159. orbits 1995, orbits 1995,.
  • 8Fridrich J, Geer J. Reconstruction of chaotic orbits under finite resolution [J]. J Appl Math Comp, 1995, 80: 129-159.
  • 9Feldmann U, Hasler M, Schwarz W. Communication by chaotic signals.. The inverse system approach [J]. International Journal of Circuit Theory and Applications, 1996, 24.. 551-579.
  • 10Zhou H, Ling X T. Problems with the chaotic inverse system encryption approach [J]. IEEE Trans Circuits Systems I, 1997, 44 (3): 268-271.

同被引文献40

引证文献9

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部