期刊文献+

基于自适应联邦滤波的相对导航信息融合 被引量:1

Data fusion based on adaptive federal Kalman filter for relative navigation
原文传递
导出
摘要 针对基于GPS/MV组合导航方式的无人机空中加油问题,分析了对接阶段GPS及视觉传感器存在的条件约束。在建立导航传感器非线性相对位置测量模型的基础上,设计了基于扩展卡尔曼滤波的自适应联邦滤波器,并与集中式滤波进行了对比仿真。结果表明,提出的算法保证了部分传感器失效时导航数据输出的平稳性和容错性,滤波精度完全满足无人机空中加油相对导航系统要求。 According to the autonomous aerial refueling for UAVs based on GPS/Machine Vision integration navigation,the restrictions on the sensors during docking are analyzed.An adaptive federal Kalman filter is designed,which is based on extended Kalman filter algorithm,after modeling the sensors nonlinear relative position measurement models and further comparison is made between the proposed algorithms and centralized Kalman filter.The simulation shows that the outputs of the proposed algorithm are continuous and stabilized during sensor failure,and its precision can satisfy the requirements of UAV aerial refueling relative navigation system perfectly.
出处 《飞行力学》 CSCD 北大核心 2011年第5期92-96,共5页 Flight Dynamics
基金 航空科学基金资助(2008ZC01006)
关键词 空中加油 相对导航 机器视觉 联邦滤波 aerial refueling relative navigation machine vision federal filter
  • 相关文献

参考文献9

  • 1Joseph P, Jacob L. Automated aerial refueling: extending the effectiveness of unmanned air vehicles [ C ]//AIAA Modeling and Simulation Technologies conference and Ex- hibit. San Francisco ,2005 : 6005-6012.
  • 2Hinchman J, Daniel Schreiter. Automated aerial refueling presentation to 2007 ARSAG conference [ R ]. Las Vegas: Air Force Research Laboratory ,2007 : 1-18.
  • 3董新民,徐跃鉴,陈博.自动空中加油技术研究进展与关键问题[J].空军工程大学学报(自然科学版),2008,9(6):1-5. 被引量:60
  • 4Marco M, Campa G. GPS/MV based aerial refueling for UAVs [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island : 2008 : 7258 -7268.
  • 5Campa G, Fravolini M, Antonio Ficola, et al. Autonomous aerial refueling for UAVs using a combined GPS machine vision guidance [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Rhode Island, 2004: 5350-5361.
  • 6Lu C P, Hager G, Mjolsness E. Fast and globally conver- gent pose estimation from video images [ J ]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2000,22(6) :610-622.
  • 7Marco M, Campa G. Machine Vision/GPS integration u- sing EKF for the UAV aerial refueling problem[ J]. IEEE Transactions on System Man and Cyberentics, 2008, 11 (6) :791-801.
  • 8邱恺,荣军,陈天如,杨振.联邦滤波信息分配方法研究[J].传感技术学报,2005,18(3):676-679. 被引量:10
  • 9郭军,董新民,徐跃鉴,陈博.视觉导航辅助的自主空中加油建模与仿真[J].系统仿真学报,2010,22(10):2454-2458. 被引量:7

二级参考文献37

  • 1Automated Aerial Refuel(AAR) Technologies and Challenges[ R]. AFRL - VA - WP - TP - 2004 - 314.
  • 2Smith Richard K. Seventy- five Years of In-flight Refueling Highlights( 1923 -1998)[ M]. Lockland :Air Force History and Museums Program. 1998.
  • 3Nalepka Joseph P, Hinchman Jacob L. Automated Aerial Refueling: Extending the Effectiveness of Unmanned Air Velficles [ R]. AIAA - 2005 - 6005.
  • 4Jacob Hinchman. Automated Aerial Refueling Research Summary Presentation[ R]. AFRL- VA- WP- TP- 2003 -344.
  • 5Hansen Jennifer L. The NASA Dryden AAR Project: A Flight Test Approach to An Aerial Refueling System [ R ]. AIAA -2004 - 4939.
  • 6Hansen J L, Murray J E, Campos N V. The NASA Dryden AAR Project: A Flight test Approach To An Aerial Refueling System [ R ]. AIAA - 2004 - 4939.
  • 7Lorenzo Pollini, Mario Innocenti, Roberto Matr. Vision Algorithms for Formation Flight and Aerial Refueling with Optimal Marker Labeling[ R]. AIAA - 2005 - 6010.
  • 8Lorenzo Pollini, Roberto Mati, Mario Innocenti, et al. A Synthetic Environment for Simulation of Vision - based Formation Flight [ R ]. AIAA - 2003 - 5376.
  • 9Valasek J, Kimmett J, Hughes D,et al. Vision Based Sensor and Navigation System for Autonomous Aerial Refueling[ R]. AIAA - 2002 - 3441.
  • 10Kimmett J, Valased J, Junkins J. Autonomous Aerial Refueling Utilizing A Vision Based Navigation System. [ R]. AIAA -2002 - 4469.

共引文献71

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部