期刊文献+

基于加权融合纹理的路面裂缝检测 被引量:5

Pavement Crack Detection Based on Weight Texture
下载PDF
导出
摘要 基于规则纹理的路面裂缝检测算法由于其自身存在的弱规则性、抗噪性差和稳定性差等问题,不能有效地检测出路面裂缝。为了解决此类问题,提出了一种基于加权融合纹理的路面裂缝检测算法。该方法采用单向多级中值滤波器滤除噪声,同时有效地保留裂缝边缘细节信息;然后融合局部二元模式特征、相对标准差和对比度三种纹理特征提取路面裂缝。实验结果表明,该算法抗噪性好,能快速有效地检测出路面裂缝。 Pavement crack detection approach based on regular texture cannot detect the pavement crack effectively for its weak regularity,bad anti-jamming ability and bad stability.In order to solve problems,a novel pavement crack detection approach based on weight texture is presented.At first,a unidirectional multi-level median filter is applied to eliminate noise while maintain the details of crack edge.Then three kinds of texture features that the local binary pattern(LBP) texture feature,the relative standard deviation and the contrast are combined to detect the pavement cracks.Experiments have been carried out and the results show that the proposed approach is robust to noise,and can detect the pavement crack effectively.
出处 《计算机与数字工程》 2011年第10期153-156,共4页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:50975211) 武汉市学科带头人计划项目(编号:Z201051730001)资助
关键词 路面裂缝检测 单向多级中值滤波 局部二元模式特征 特征提取 加权纹理 pavement crack detection unidirectional multi-level median filter local binary pattern feature feature extraction weight texture
  • 相关文献

参考文献10

  • 1CHENG H D, CHEN J R, GLAZIER C, et al. Novel approach to pavement cracking detection based on fuzzy set theory[J]. Journal of Computing in Civil Engineering, 1999,13 (4): 270-280.
  • 2LI Q Q, LIU X L. Novel approach to pavement image segmentation based on neighboring difference histogram method[C]//IEEE Congress on Image and Signal Processing, Sanya, 2008:792-796.
  • 3PEGGY S, JEAN D, VINCENT L, et al. Automation of pavement surface crack detection using the continu- ous wavelet transform[C]//IEEE Proceedings of International Conference on Image Processing, Atlanta, 2006 : 3037-3040.
  • 4薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 5王华,朱宁,王祁.公路路面分形纹理特征分析和分类[J].哈尔滨工业大学学报,2005,37(6):816-818. 被引量:7
  • 6ZHOU J, HUANG P S, CHIANG F. Wavelet based pavement distress detection and evaluation[C]//Proceedings of the SPIE The International Society for Optical Engineering, San Diego, CA, USA, 2003 : 728-739.
  • 7刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:431
  • 8OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 (7) :971-987.
  • 9CHENG H D, SHI X J, GLAZIER C. Real-time image thresholding based on sample space reduction and interpolation approach[J]. Journal of Computing in Civil Engineering, 2003,17(4) : 264-272.
  • 10KITTLE J, ILLINGWORTH J, FOGLEIN J. Threshold selection based in a simple image statistic [J].Computer Vision, Graphics and Image Processing, 1985,30: 125- 147.

二级参考文献23

  • 1张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 4MANDELBROT B B. The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1982.
  • 5CHEN C C, DAPONTE J S, FOX M D, Fractal feature analysis and classification in medical image [J]. IEEETrans Med Imag, 1989,8(4): 141 - 152.
  • 6WU C M, CHEN Y C, HSIEH K S. Texture feature for classification of ultrasonic liver images[J]. IEEE Trans Med Imag, 1992,11:141 - 152.
  • 7MANDELBROT B B, NESS J W V. Fractional Brownian motions, fractional noises and applications [J]. SIAM Rev, 1968,10(4) :422 -437.
  • 8PENTLAND A, Fractal - based description of natural scenes[J]. IEEE Trans Pattern Anal Machine Intell,1984, PAMI - 6:666 - 674.
  • 9KELLER J M, CHEN S, CROWNOVER R M. Texture description and segmentation through fractal geometry[J]. Conput Vision. Graph, Image Processing, 1989,45:150 -166.
  • 10J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.

共引文献606

同被引文献62

  • 1苗启广,王宝树.基于改进的拉普拉斯金字塔变换的图像融合方法[J].光学学报,2007,27(9):1605-1610. 被引量:50
  • 2中华人民共和国交通部.JTGD62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
  • 3中华人民共和国交通部.JTG/TJ22.2008公路桥梁加固设计规范[S].北京:人民交通出版社,2008.
  • 4Gonzalez R C,Woods R E.Digital image processing[M]. 2nd ed.San Antonio :Pearson Education, 2007.
  • 5Salman M,Mathavan S.Pavement crack detection using the Gabor filter[C]//IEEE Annual Conference on Intelligent Transportation Systems,2013:2039-2044.
  • 6Henrique Oliveira.Automatic road crack detection and characterization[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(1):155-168.
  • 7Liu F,Xu G,Yang Y,et al.Novel approach to pavement cracking automatic detection based on segment extending[C]//IEEE Proceedings of International Symposium on Knowledge Acquisition and Modeling,2008:610-614.
  • 8Radhakrishna Achanta,Sheila Hemami.Frequency-tuned salient region detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2009:1597-1604.
  • 9Marr D.Vision:A computational investigation into the human representation and processing of visual information[M].San Francisco,1982.
  • 10Yamaguchi T,Hashimoto S.Improved percolation-based method for crack detection in concrete surface images[C]//International Conference on Pattern Recognition,2008:1-4.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部