期刊文献+

基于神经网络的铅酸蓄电池模型研究 被引量:2

Research on Lead-acid Storage Battery' Model Based on Neural Network
下载PDF
导出
摘要 根据某型潜艇蓄电池充放电的特点,设计了充放电装备用以进行模型试验,提出了充放电电流、蓄电池附属系统及参数测量实验的技术方案,以实验数据为基础,结合神经网络技术,建立了比较准确的蓄电池模型。 According to the charge and discharge characteristics of a submarine lead-acid storage battery, the battery's charge and discharge equipment is designed for experiment. A solution is put forward which include the charge and discharge current, subsidiary system of storage battery and measurement of parameter. The accurate model of lead-acid storage battery iss build up based on experiment data and neural network technique.
出处 《船电技术》 2011年第10期49-51,共3页 Marine Electric & Electronic Engineering
关键词 铅酸蓄电池 充放电特性 参数测量 神经网络 附属系统 lead-acid storage battery charge and discharge characteristic parameter measure neural network subsidiary system
  • 相关文献

参考文献3

二级参考文献18

  • 1章艳,曾昭华,李洪春,苏志军.灰色系统在蓄电池失效预测中的应用[J].电源技术,2005,29(5):319-321. 被引量:9
  • 2刘险峰,邹积岩.基于灰色理论的蓄电池容量预测[J].大连理工大学学报,2005,45(5):630-632. 被引量:17
  • 3唐致远 薛建军 李建刚 等.锂蓄电池嵌入电极的放电过程机理[J].化学通报网络版,2001,4:0104-0104.
  • 4JOSSEN A, SPATH V, DORING H, et al. Reliable battery operation--a challenge for the battery management system[J]. J Power Sources, 1999, 84:283--286.
  • 5CAMP J, WILLIAM O, TURNER C, et al. Method and apparatus for determining the remaining operation time of a mobile communication unit[ P]. US: 6236214, 2001.
  • 6Chan C C. The state of the art of electric and hybrid vehicles[J]. Proceedings of IEEE,2002, 90(2): 247- 275.
  • 7Shen W X, Chan C C, Lo E W C, et al. Adaptive nuero-fuzzy modeling of battery residual capacity for electric vehicle[J]. IEEE Trans. on Industrial Electronics, 2002, 49(3): 677-684.
  • 8Shen W X, Chan C C, Lo E W C, et al. A new battery available capacity indicator for electric vehicles using neural network[J]. Energy Conversion and Management, 2002, 43(6): 817-826.
  • 9Chan C C, Lo E W C, Shen W X. Available capacity computation model based on artificial neural network for lead-acid batteries in electric vehicles[J]. Journal of Power Sources, 2000, 87(1-2): 201-204.
  • 10Simon Haykin. Neural Networks: A Comprehensive Foundation[M]. 2nd ed. New Jersey: Prentice Hall PTR, 1999.

共引文献72

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部