期刊文献+

过冷水滴碰撞导线表面结冰机理的实验研究 被引量:7

Experimental Study on the Freezing Mechanism of Super-cooled Water Droplets Impacting on a Wire
下载PDF
导出
摘要 导线覆冰是一种随机发生的自然现象,曾对电网的安全构成严重危害。目前人们对过冷水滴碰撞导线结冰过程机理认识尚不太清楚。文中对过冷水滴碰撞导线表面结冰机理进行了实验研究,通过对单一过冷水滴碰撞圆柱金属表面冻结的动态行为进行高速拍摄,揭示了该结冰过程形态特征,并从大量实验数据中分析得到了过冷水滴分别以2.2m/s和4.3m/s的速度撞击不锈钢、紫铜、铝等表面瞬时结冰边界条件的统计数据。同时还对过冷水滴流量从0.6滴/s到2.2滴/s,环境温度从-2℃~-8℃时导线覆冰增长动态过程影像及形态变化进行了研究和归纳分析。 Ice accretion on power lines is a random natural phenomenon and may seriously harm to the safety of power network.However,the mechanism of the freezing process of super-cooled water droplet impacting on wires is still not fully understood at present.In this paper,an experimental investigation on the freezing mechanism of the super-cooled water droplet impacting on a cold wire surface is performed.The morphological characters and the impact dynamics of a single super-cooled droplet collide on the cylindrical metal surfaces have been revealed with high-speed photographing.An instantaneous freezing phenomenon of the super-cooled impacting droplet was identified and the condition boundary for this kind of freezing was obtained statistically from the experimental data for the surfaces of stainless steel,copper and aluminum,on which the super-cooled droplets impinging with speeds of 2.2 m/s and 4.3 m/s.Meanwhile,the dynamic images of the ice accretion on a real aluminum wire with the droplet impinging rate from 0.6 to 2.2 drops/s in ambient temperature from?-2℃ to?-8℃ were obtained and the morphological behaviors of these accretion processes were analyzed.
出处 《制冷学报》 CAS CSCD 北大核心 2011年第5期37-41,共5页 Journal of Refrigeration
关键词 工程热物理 过冷水滴 覆冰机理 碰撞 瞬时结冰 冰增长 Engineering thermophysics Super-cooled water droplet Freezing mechanism Impact Instantaneous freezing Ice growth
  • 相关文献

参考文献11

  • 1Makkonen L, Lozowski E P. Numerical Modeling of Icing on Power Network Equipment[J]. Springer Science, 2008, 83-117.
  • 2Kollar L E, Farzaneh M, Karev A R. Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution[J]. International Journal of Multiphase Flow, 2005, 31(1): 69-92.
  • 3Naterer G F. Coupled liquid film and solidified layer growth with impinging supercooled droplets and Joule heating[J]. International Journal of Heat and Fluid Flow, 2003, 24(2): 223-235.
  • 4Tabakova S, Feuillebois F. On the solidif:cation of a supercooled liquid droplet lying on a surface[J]. Journal of Colloid and Interface Science, 2004, 272(1): 225-234.
  • 5Myers T G, Hammond D W. Ice and water film growth from incoming supercooled droplets[J]. Int. J. Heat Mass Transfer, 1999, 42(12): 2233-2242.
  • 6Myers T G, Charpin J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25): 5483-5500.
  • 7Schaub Jr W R. Methods to estimate ice accumulations on surface structures[C]// Proceedings of the 7th International workshop on Atmospheric Icing of Structures. Chicoutimi: 1996, 183-188.
  • 8Prodi F, Levi L, Levizzani V. Ice accretions on fixed cylinders[J]. Quarf. J. R. Met. SOC., 1986, 112(474): 1091-1109.
  • 9Fumoto K. Experimental Study on the Critical Heat Flux of Ice Accretion Along a Fine Wire Immersed in a Cold Air Flow with Water Spray[J]. Advances in Cold-Region Thermal Engineering and Sciences, 1999, 533: 45-54.
  • 10Lu M L, Popplewell N, Shah A H. Freezing Rain Simulations for Fixed: Unheated Conductor Samples[J]. American Meteorological Society, 2000, 39(12): 2385-2396.

同被引文献40

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部