期刊文献+

基于BP神经网络的干热风灾害预测 被引量:6

Dry-hot Wind Hazard Prediction Based on the BP Neural Network
下载PDF
导出
摘要 干热风是我国新疆,西北等地农业气象灾害之一,其形成因素呈现复杂的非线性关系.利用传统方法很难建立起一个精确完善的预测模型.人工神经网络具有强大的非线性映射能力,尤其是BP神经网络在预测领域中被广泛应用.本文利用BP神经网络对干热风灾害进行了预测.结果表明,基于BP神经网络的干热风预测模型误差小,能达到满意的效果. Dry hot wind is one of agricultural meteorological disasters in Xinjiang, Northwest and other places, whose caused factors showed the complex nonlinear relationship. Using traditional methods is difficult to establish a accurate comprehensive prediction model. Artificial neural network has a strong nonlinear mapping ability, especially BP neural network is widely used in the field of prediction. In this paper, BP neural network was used to predict the dry hot wind disasters. The results showed that the hot wind prediction model based on BP neural network has small error and can achieve satisfactory results.
出处 《海南师范大学学报(自然科学版)》 CAS 2011年第3期279-282,共4页 Journal of Hainan Normal University(Natural Science)
基金 山西师范大学科技研究项目(873023)
关键词 干热风 非线性 BP神经网络 Dry hot wind nonlinear BP neural network
  • 相关文献

参考文献6

二级参考文献20

  • 1孟凡刚,张捍民,李艳松,张兴文,杨凤林.膜生物反应器膜污染数学模型研究进展[J].水处理技术,2005,31(10):1-4. 被引量:4
  • 2叶晓,黄小葳,俞军,钟儒刚.基于BP神经网络建立姬松茸多糖超滤分离模型[J].化学研究与应用,2006,18(9):1120-1123. 被引量:10
  • 3郑静,曾嘉,林开利,周伟良,潘教麦.人工神经网络-分光光度法同时测定废水中的金和钯[J].分析试验室,2006,25(12):19-22. 被引量:8
  • 4石宝强,张捍民,杨凤林,孟凡刚,张兴文.人工神经网络在膜生物反应器膜污染预测中的应用前景[J].工业水处理,2006,26(12):14-17. 被引量:9
  • 5Grishma R S, Shankararaman C. Predicting membrane fouling during municipal drinking water nanofiltration using "artificial neural networks [J] .J Membr Sci,2003,217:69- 86.
  • 6Mjalli F S, M-Ashehl S, Mfadala H E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[ J]. J Environ Manag, 2007,83 : 329 - 338.
  • 7Hanbay D, Turkoglu I, Demir Y. Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks [J]. Expert Systems with Applications,2008,34:1038- 1043.
  • 8Oliveira-Esquerre K P, Seborg D E, Bruns R E, et al. Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill: Part I . Linear approaches[J]. Chem Eng J,2004,104:73 - 81.
  • 9Dornier M, Decloux M, Trystram G, et ol. Dynamic modeling of crossflow microfihration using neural networks [ J ]. 3 Membr Sci, 1995,98: 263 - 273.
  • 10Delgrange N, Cabassud C, Durand-Bourlier L, et al. Neural networks for prediction of ultrafiltration transmembrane pressure-application to drinking water production[ J]. J Membr Sci, 1998,150:111 - 123.

共引文献31

同被引文献71

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部