期刊文献+

连续型凸动态规划的离散近似迭代法研究 被引量:2

THE DISCRETE APPROXIMATE ITERATION METHOD ON THE CONTINUING CONVEX DYNAMIC PROGRAMMING
原文传递
导出
摘要 为解决连续型凸动态规划的"维数灾"问题,提出了一种新的算法一离散近似迭代法.该算法的基本思路为:首先,将连续型状态变量离散化,根据网络图的构造方法将动态规划问题转化为多阶段有向赋权图;其次,运用极大代数求出起点至终点的最短路,即获得模型的一个可行解;最后,以该可行解为基础,继续迭代直到前后两个可行解非常接近.文章还证明了该算法的收敛性和线性收敛,并以一个具体例子验证了算法的有效性. In order to solve the "dimension curse", the paper proposes a new discrete approximate iteration method to solve the continuing convex dynamic programming model. Firstly, according to the network approach, the state variables are discretized and the model is transformed into multiperiod weighted digraph. Secondly, the max-plus algebra and the max-plus algebra are used to solve the shortest path that is the admissible solution. Thirdly, based on the admissible solution, the iteration is continued until the two admissible solutions are close each other. The method is proved to be convergent and linearly convergent. Finally, an example shows that the method is highly effective.
作者 张鹏
出处 《系统科学与数学》 CSCD 北大核心 2011年第8期943-951,共9页 Journal of Systems Science and Mathematical Sciences
基金 教育部人文社科基金项目(08JC630062) 湖北省自然科学基金项目(2010CDB303304) 湖北省社会科学基金项目"十一五"规划资助课题(203059)
关键词 凸动态规划问题 离散近似迭代方法 极大代数 旋转算法 Convex dynamic programming, discrete approximate iteration, max-plusalgebra, pivoting algorithm.
  • 相关文献

参考文献12

  • 1Bellman R. Dynamic Programming. Princeton University Press, Princeton, 1957.
  • 2QIN Yuyuan. Optimum Path Problems in Networks. Hubei Education Press, 1992.
  • 3Senthil Kumar S, Palanisamy V. A dynamic programming based fast computation Hopfield neural network for unit commitment and economic dispatch. Electric Power Systems Research, 2007, (77): 917-925.
  • 4Sitarz S. Hybrid methods in multi-criteria dynamic programming. Applied Mathematics and Com- putation, 2006, 180: 38-45.
  • 5Trzaskalik T, Sitarz S. Discrete dynamic programming with outcomes in random variable struc- tures. European Journal of Operational Research, 2007, 177(3): 1535-548.
  • 6Sitarz S. Ant algorithms and simulated annealing for multicriteria dynamic programming. Com- puters & Operations Research, 2007, 36(2): 1-14.
  • 7De Farias D P, Van Roy B. The linear programming approach to approximate dynamic program- ming. Operations Research, 2003, 51(6): 850-865.
  • 8张鹏,张忠桢,岳超源.限制性卖空的均值-半绝对偏差投资组合模型及其旋转算法研究[J].中国管理科学,2006,14(2):7-11. 被引量:41
  • 9张鹏,张忠桢,岳超源.基于效用最大化的投资组合旋转算法研究[J].财经研究,2005,31(12):116-125. 被引量:15
  • 10张鹏,张忠桢,曾永泉.限制性卖空的均值-方差投资组合优化[J].数理统计与管理,2008,27(1):124-129. 被引量:29

二级参考文献36

共引文献79

同被引文献19

  • 1Li Duan, Chan Tsz-Fung, Ng Wan-Lung. Safety- first dynamic portfolio selection[J]. Dynamics of Continuous, Discrete and hnpulsive Systems, 1998, 4:585-600.
  • 2Li Duan, Ng Wan-Lung. Optimal dynamic portfolio selection: multiperiod mean-variance formulation [J]. Mathematical Finance, 2000, 10(3) :387-406.
  • 3Calafiore G C. Multi-period portfolio optimization with linear control policiesfJ. Automatica, 2008, 44 : 2463-2473.
  • 4Zhu Shushang, Li Duan, Wang Shouyang. Risk control over bankruptcy in dynamic portfolio selec-tion., a generalized mean-variance formulation [J]. IEEE Transactions on Automatic Control, 2004, 49 (3) . 447-457.
  • 5Yu Mei, Takahashi S, Inoue H, et al. Dynamic portfolio optimization with risk control for absolute deviation model[J]. European Journal of Opera- tional Research, 2010, 201(2) . 349-364.
  • 6Yah Wei, Miao Rong, Li Shurong. Multi-period semi-variance portfolio selection: model and numer- ical solution[J]. Applied Mathematics and Compu- tation, 2007,194: 128-134.
  • 7Pmar M C. Robust scenario optimization based on downside-risk measure for multi-period portfolio se- lection[J]. OR Spectrum, 2007, 29(2). 295-309.
  • 8Zhang Weiguo, Liu Yongjun, Xu Weijun. A possi- bilistic mean-semivariance-entropy model for multi- period portfolio selection with transaction costs[J]. European Journal of Operational Research, 2012, 222(2) : 341-349.
  • 9Zhang Weiguo, Liu Yongjun, Xu Weijun. A new fuzzy programming approach for multi-period port- folio optimization with return demand and risk con- trol[J]. Fuzzy Sets and Systems, 2014, 246:107- 126.
  • 10Liu Yongjun, Zhang Weiguo, Xu Weijun. Fuzzy multi-period portfolio selection optimization models using multiple criteria[J]. Automatica, 2012, 48. 3042 -3053.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部