期刊文献+

奇异Hamilton-Jacobi-Bellman方程粘性解的存在唯一性

EXISTENCE AND UNIQUENESS OF THE VISCOSITY SOLUTION TO SOME SINGULAR HJB EQUATIONS
原文传递
导出
摘要 研究系数在边界点有奇性的一类Hamilton-Jacobi-Bellman(HJB)方程的粘性解的存在唯一性问题及解的渐近估计,这类问题包括波动系数振荡或爆破的情况.奇异HJB方程在随机最优控制和金融数学等许多领域都有重要的应用,包括金融数学中的随机利率模型.应用粘性上下解理论建立了一类奇异HJB方程的比较原理,给出了粘性解存在唯一性的条件. This paper is considered with the existence and uniqueness of the viscosity solution to some Hamilton-Jacobi-Bellman (HJB) equations with singular coefficients near at the boundary with either vanishing, or oscillating, or blowing-up diffusion coefficients. The singular HJB equation has been applied to stochastic optimal control and financial mathematics, including stochastic rate CIR model. By means of viscosity super-solution and viscosity sub- solution theory, the comparison principle of viscosity solution to the singular HJB equation is obtained, and the conditions of the existence and uniqueness of the solution are given.
出处 《系统科学与数学》 CSCD 北大核心 2011年第8期1000-1009,共10页 Journal of Systems Science and Mathematical Sciences
基金 中央高校基本科研业务费专项资金资助课题(09Cx04020A)
关键词 奇异HJB方程 粘性解 随机利率 CIR模型 爆破 singular HJB, viscosity solution, stochastic rate, CIR model, blowing-up
  • 相关文献

参考文献8

  • 1Oksendal Bernt. Stochastic Differential Equations. 6th Ed. Spinger, 2005.
  • 2Pham Huyen. Continuous-time Stochastic Control and Optimization with Financial Applications. Springer, 2009.
  • 3Bardi M and Capuzzo-Dolcetta I. Optimal control and viscosity solutions of Hamilton-Jacobi- Bellman equations. Systems and Control: Foundations and Applications, Boston, MA: Birkhauser, 1997.
  • 4Crandall M G, Ishii H and Lions P L. User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 1992, 27(1): 1-67.
  • 5Lions P L. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II: Viscosity solutions and uniqueness, Commun. Partial Differ. Equations, 1983, 8(11): 1229-1276.
  • 6Yong J Y and Zhou X. Stochastic Controls, Hamiltonian Systems and HJB Equations. New York, NY: Springer, 1999.
  • 7Chaumont Sebastien. Uniqueness to elliptic and parabolic Hamilton-Jacobi-Bellman equations with non-smooth boundary. C. R. Acad. Sci. Paris, Ser. I 339, Partial Differential Equations, 2004.
  • 8Motta Monica. Viscosity Solutions of HJB Equations with Unbounded Data and Characteristic Points. Appl. Math. Optim., 2004, 49: 1-26.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部