期刊文献+

基于独立成分分析的时间序列谱聚类方法 被引量:17

Spectral clustering method based on independent component analysis for time series
原文传递
导出
摘要 为了对时间序列数据进行聚类分析,提出了一种基于独立成分分析的时间序列多路归一化割谱聚类方法,并给出了利用独立成分分析对时间序列数据进行特征提取和降维的理论解释.该方法首先利用独立成分分析对时间序列数据进行特征提取,然后利用多路归一化割谱聚类方法完成对时间序列特征数据的聚类分析,从而得到了一种新的基于特征的时间序列聚类方法.为了验证该方法的可行性和有效性,将其应用于仿真时间序列数据和实际的股票时间序列数据聚类分析中,取得了较好的数值结果. In order to cluster time series data,this paper presents spectral clustering method based on independent component analysis for time series and gives some theoretical interpretations for feature extraction and dimension reduction of time series data by using independent component analysis.The method includes two steps.In the first step,it conducts feature extraction and dimension reduction of time series data by applying independent component analysis.In the second step,it clusters time series data using multiway normalized cut spectral clustering algorithm.Consequently,a new feature-based time series clustering method is derived.With the purpose of validating feasibility and effectiveness of the presented method,the method is used to analyze the simulation time series data and the real world stock time series data and much better numerical results are derived.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第10期1921-1931,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70871015 71031002) 中央高校基本科研业务费专项资金(DUT11SX04)
关键词 时间序列数据挖掘 独立成分分析 谱聚类 time series data mining independent component analysis spectral clustering
  • 相关文献

参考文献16

  • 1Liao T. Clustering of time series data - A survey[J]. Pattern Recognition, 2005, 38:1857-1874.
  • 2Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[M]. New Jersey: John Wiley & Sons, 2001.
  • 3Kiviluoto K, Oja E. Independent component analysis for parallel financial time series[C]// Proceedings of the Fifth International Conference on Neural Information Processing, Cambridge: MIT Press, 1998:895 898.
  • 4Wu E, Yu P. ICLUS: A robust and scalable clustering model for time series via independent component analysis[J]. International Journal of Systems Science, 2006, 37(13): 987-1001.
  • 5郭崇慧,贾宏峰,张娜.基于ICA的时间序列聚类方法及其在股票数据分析中的应用[J].运筹与管理,2008,17(5):120-124. 被引量:13
  • 6Luxberg U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.
  • 7Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
  • 8Meila M, Shi J. Learning segmentation by random walks[C]// Advances in Neural Information Processing Systems, Cambridge: MIT Press, 2001: 873-879.
  • 9Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm[C]//Advances in Neural Information Processing Systems, Cambridge: MIT Press, 2001: 849-856.
  • 10Zelnik-Manor L, Perona P. Self-Tuning spectral clustering[C]//Advances in Neural Information Processing Systems, Cambridge: MIT Press, 2004:1601-1608.

二级参考文献19

  • 1陈玉山,席斌.独立成份分析方法在股票分析中的应用[J].计算机工程与设计,2007,28(6):1473-1476. 被引量:5
  • 2Dunham MH.数据挖掘教程[M].郭崇慧,田凤占,靳晓明译.北京:清华大学出版社,2005.
  • 3Han J, Kamber M. Data mining: concepts and techniques, second edition[ M ]. San Francisco: Morgan Kaufmann, 2006.
  • 4Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration[ J]. Data Mining and Knowledge Discovery, 2003, 7(4) : 349-371.
  • 5Liao T W. Clustering of time series data: a survey[ J]. Pattern Recognition, 2005, 38: 1857-1874.
  • 6Theodoridis S, Koutroumbas K. Pattern recognition[ M ]. Third Edition. New York: Academic Press, 2006.
  • 7Wilpon J G, Rabiner L R. Modified k-means clustering algorithm for use in isolated word recognition[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(3): 587-594.
  • 8Shaw C T, King G P. Using cluster analysis to classify time series[J]. Physica D, 1992, 58: 288-298.
  • 9Goutte C, Toft P, Rostrup E. On clustering FMRI time series[J]. Neuroimage, 1999, 9(3) : 298-310.
  • 10Fu T-C, Chung F-L, Ng V, Luk R. Pattern discovery from stock time series using self-organizing maps[ A]. In: KDD 2001 Workshop on Temporal Data Mining[C], San Francisco, 2001, 27-37.

共引文献44

同被引文献197

引证文献17

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部