期刊文献+

基于分类集成的钓鱼网站智能检测系统 被引量:8

Intelligent phishing website detection using classification ensemble
原文传递
导出
摘要 近来,通过仿冒真实网站的URL地址及其页面内容的"钓鱼网站"已严重威胁到互联网用户的隐私和财产安全.为了应对这种威胁,该文通过对大量已知正常网站和钓鱼网站的学习,解析其对应的网页内容,提取相应的网页标题、网页关键字、网页描述信息等8种特征来描述这些网站,然后基于不同的特征表达方法构建了相应的分类器;对于待检测的网站,采用分类集成的方法综合各个分类模型的预测结果,达到对钓鱼网站智能检测的目标.基于上述方法,构建了钓鱼网站智能检测系统IPWDS,并将其集成于金山安全产品中.在大量、真实数据集的基础上,实验结果表明IPWDS系统对钓鱼网站的检测效果优于现有常见的钓鱼网站检测方法和常用的反钓鱼软件. By counterfeiting the real URL address and the actual page content,phishing websites have been a serious threat to the Internet user's privacy and property.In this paper,the authors propose an automatic method for intelligent phishing website detection through learning from a large number of normal and phishing websites.In particular,given a website,the authors first parse and analyze its webpage content and extract 8 different types of features such as title,keywords and description information to represent the website.Classifiers are then built based on these different feature representations.Finally classification ensemble methods are used to combine the prediction results of individual classifiers together for phishing website detection.Using the proposed method,the authors developed an intelligent phishing website detection system IPWDS,which has already been integrated into the Kingsoft's security products.Experiments on real-world datasets demonstrate that IPWDS outperforms existing popular detection methods and commonly used anti-phishing software tools in phishing website detection.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第10期2008-2020,共13页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(10771176) 广东省产学研重大科技专项(2008A09030001)
关键词 钓鱼网站 分类器 分类集成 phishing website classifier classification ensemble
  • 相关文献

参考文献1

二级参考文献3

  • 1Pan Ying, Ding Xuhua. Anomaly Based Web Phishing Page Detection[C]//Proc. of the 22nd Annual Computer Security Applications Conference. New Orleans, LA, USA: [s. n.], 2006: 381-392.
  • 2Zhang Yue, Jason I. A Content-based Approach to Detecting Phishing Web Sites[C]//Proc. of the 16th International Conference on World Wide Web. Budapest, Hungary: [s. n.], 2007: 639-648.
  • 3White H. Commentionist Nonparametric Regression: Multilayer Feed Forward Networks Can Learn Arbitrary Mapping[J]. Neural Networks, 1990, 3(1): 47-51.

共引文献7

同被引文献72

  • 1梁雪松.基于浏览器的钓鱼网站检测技术研究[J].信息安全与通信保密,2007,29(11):53-55. 被引量:7
  • 2Tang J, Mumey B, Xing Y, et al. On exploiting flow allocation with rate adaptation for green networking[C]// Proceedings of IEEE INFOCOM. Orlando, FL: IEEE Press, 2012: 1683-1691.
  • 3Recupero D R. Toward a Green Internet[J]. Science, 2013, 339(6127): 1533-1534.
  • 4Hinton K, Baliga J, Feng M Z, et al. Power consumption and energy efficiency in the internet[J]. IEEE Network, 2011, 25(2): 6-12.
  • 5Bolla R, Bruschi R, Davoli F, et al. Energy efficiency in the future internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures[J]. IEEE Communications Surveys & Tutorials, 2011, 13(2): 223 -244.
  • 6Bianzino A P, Chaudet C, Rossi D, et al. A survey of green networking research[J]. IEEE Communications Surveys & Tutorials, 2012, 14(1): 3-20.
  • 7Bolla R, Bruschi R, Carrega A, et al. Green networking with packet processing engines: Modeling and optimiza- tion[J]. IEEE/ACM Transactions on Networking (TON), 2014, 22(1): 110 -123.
  • 8Mathew V, Sitaraman R K, Shenoy P J. Reducing energy costs in Internet-scale distributed systems using load shifting[C]. COMSNETS, 2014:1 -8.
  • 9Bolla R., Lombardo C, Bruschi R, et al. DROPv2: Energy efficiency through network function virtualization[J]. IEEE Network, 2014, 28(2): 26-32.
  • 10Chiaraviglio L, Mellia M, Neri F. Minimizing ISP network energy cost: Formulation and solutions[J]. IEEE/ACM 75ransactions on Networking (TON), 2012, 20(2): 463- 476.

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部