期刊文献+

甲流病毒传播的年龄结构模型的稳定性 被引量:1

The Stability of an Age-Dependent H1N1 Influenza Virus Model
原文传递
导出
摘要 研究甲型H1N1流感病毒的传播规律,建立年龄结构具有接种措施的SEIR流行病模型,给出了疾病流行的阈值并证明了地方病平衡点的稳定性问题.最后根据一些实际数据,进行数值模拟进而对模型的合理性加以完善,借助模型预测下一阶段甲流爆发的可能性并提出相关应对措施. Study of the dissemination rule of HIN1 influenza virus. Build an age-structured SEIR epidemic model with vaccination, get the threshold of disease epidemic and prove the stability of endemic equilibrium. Finally, do the numerical simulation by actual data and perfect the model. Then, with the help of the model predict the next outbreak phase and put forward relevant measures and suggestions.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第20期112-118,共7页 Mathematics in Practice and Theory
关键词 甲型H1N1流感病毒 年龄结构 接种 稳定性 数值模拟 A(H1N1) influenza virus age-structure vaccination SEIR epidemic model stability numerical simulation
  • 相关文献

参考文献4

二级参考文献39

  • 1张仲华,徐文雄.一类SEIS流行病传播数学模型的渐近分析[J].陕西师范大学学报(自然科学版),2004,32(3):1-3. 被引量:2
  • 2徐文雄,张仲华,徐宗本.具有一般形式饱和接触率SEIS模型渐近分析[J].生物数学学报,2005,20(3):297-302. 被引量:23
  • 3Li M Y,Muldowney J S.A geometric Approach to the Global-stability Problems[J].SIAM J Math Anal,1996,27:1 070-1 083.
  • 4Fan M,Li M Y.Global Stability of an SEIS Epidemic Model with Recruitment and a Varying Total Population Size[J].Math Biosci,2001,170:199-208.
  • 5Li M Y,Wang L.Global Stability in Some SEIR Epidemic Models[J].IMA,2002,126:295-311.
  • 6H I Freedman,Ruan Shigui,Tang Moxun.Uniform Persistence and Flows Near a Closed Positively Invariant Set[J].Reprinted From Journal of Dynamics and Equations,1994,6:583-600.
  • 7Hetheote H. Qualitative analyses of communicable diseasemodels[J]. Math Biosci, 1976, (28): 335-356.
  • 8Cooke K, van den Driessche P, Zou X. Interaction of maturationdelay and nonlinear birth in population and epidemic models[J]. JMath Biol, 1999, 39: 332-352.
  • 9Li Jianquan. Ma Zhien. Qualitative analyses of SIS epidemicmodel with vaccination and varying total population size[J]. Mathematical and Computer Modelling, 2002, 35:1235-1243.
  • 10Hethcote H. The. Mathematics of infectious diseases[J],. SIAM Reviews, 2000, 42: 599-653.

共引文献26

同被引文献39

  • 1Russell CJ, Webster RG. The genesis of a pandemic influenza virus. Cell ,2005,123 ( 3 ) :368-371.
  • 2Belser JA, Bridges CB, Katz JM. Past, Present, and Possible Future Hu- man Infection with Influenza Virus A Subtype H7. Emerg Infect Dis, 2009,15 ( 6 ) : 859-865.
  • 3World Health Organization. Pandemic ( H1N1 ) 2009-update 112. http ://www. who. int/csr/dort/2010 08 06/en/index. html.
  • 4Lee V J, Lye DC, Wilder-Smith A. Combination strategies for pandemic influenza response-a systematic review of mathematical modeling stud- ies. BMC Medicine,2009,7:76.
  • 5Wu JT, Cowling BJ. The use of mathematical models to inform influen- za pandemic preparedness and response. Exp Biol Med ( Maywood ), 2011,236(8) :955-61.
  • 6Cruz-Pacheco G, Duran L, Esteva L, et al. Modelling of the influenza A ( H1 N1 ) v outbreak in Mexico city, April-May 2009, with control sani- tary measures. EUROSURVEILLANCE ,2009,14 ( 26 ) : 1-3.
  • 7Germann TC, Kadau K, Longini IM Jr, et al. Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci U S A. , 2006,103( 15 ) :5935-40.
  • 8Tracht SM, Valle SYD, Hyman JM. Mathematical Modeling of the Ef- fectiveness of Facemasks in Reducing the Spread of Novel Influenza A (H1N1). PLoSone,2010,5 (2) :1-12.
  • 9Longini IM Jr, Halloran ME, Nizam A, Yang Y. Containing pandemic influenza with antiviral agents. Am J Epidemiol,2004,159 (7) :623-33.
  • 10Arino J,Brauer F, Driessche P van den, et al. Simple models for con- tainment of a pandemic. J. R. Soc. Interface ,2006,3:453-457.

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部