期刊文献+

一种基于复杂性理论的装备作战仿真方法

An Equipment Campaign Simulating Approach Based on Complexity Theory
原文传递
导出
摘要 采用什么样的计算机仿真方法来隐喻真实的作战系统是装备作战仿真研究的关键问题.从复杂性科学的研究角度,引入了复杂适应系统(CAS)理论及其技术体系,提炼了基于Agents/space的建模与仿真框架,说明了框架实现的关键技术——可计算模型、复杂性解决方案和仿真实现平台.进而利用该方法进行了典型装备作战仿真问题研究,包括:利用神经网络、三维连续空间可计算模型,并选用Mason平台实现了装甲装备战损规律仿真;利用三层元胞自动机、产生式系统可计算模型,并选用Repast平台实现了装备群对抗仿真.为基于复杂性理论开展装备作战仿真或具有类似特征问题的研究提供了一种新的试验途径. It is crucial to select a proper M&S measure in equipment campaign simulating. From complexity science perspective, complex adaptive system (CAS) and its technology was researched. An agents/space approach was constructed incltiding of key technology of computational model, complexity mapping scheme and simulation platform. Furthermore based on this method battle damage simulating model of armored equipment was developed, single simulating model combined with neural network model, 3 dimension continuous space and Mason simulation platform, and equipments counterworking model on product system, three layers cellular automaton and Repast platform. Research result show a fresh approach on complexity theory was explored for equipment campaign and analogous system.
机构地区 [ [ [ 装甲兵工程学院
出处 《数学的实践与认识》 CSCD 北大核心 2011年第20期130-137,共8页 Mathematics in Practice and Theory
基金 中国博士后科学基金(20100481487)
关键词 agents/space框架 装备作战 仿真系统 复杂性 agents/space approach equipment campaign simulating system complexity
分类号 E91 [军事]
  • 相关文献

参考文献11

  • 1陈悦峰,徐宗昌,潘洪平,郑振铎.装甲装备战斗毁伤模拟策略研究[J].火力与指挥控制,2009,34(10):82-85. 被引量:2
  • 2Andreas Pyka, Giorgio Fagiolo. Agent-Based Modelling: A Methodology for Neo-Schumpeterian Economics[M]. Laboratory of Economics and Management Sant'Anna School of Advanced Studies, 2005.02.
  • 3Andrew Ilachinski. Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare (U), http://www.cna.org/isaac.
  • 4Liviu Panait, Gabriel Balan. 3D Woims[EB/OL]. http://cs.gmu.edu/-eclab/projects/mason/.
  • 5Epstein J M, Axtell R. Growing Artificial Societies, social Science from the bottom up [M]. Washing- ton, D.C.:Brookings Institution Press; Cambridge, Mass.: MIT Press, 1996. http://www.brookings. edu/SUGARS-1/DEFAULT.HTM.
  • 6Joey Harrison, Ankur Desai. 3D Particle Swarm Optimization[EB/OL]. http://cs.gmu.edu/-eclab/ projects/mason/.
  • 7冯迪砂,吴斌.两种数字生命的Swarm仿真研究[J].系统仿真学报,2007,19(4):928-933. 被引量:10
  • 8高宝俊,宣慧玉,李璐.一个基于Agent的股票市场仿真模型的Swarm实现[J].系统仿真学报,2006,18(4):1019-1022. 被引量:11
  • 9Swarm Development Group. Arborgames-II [EB/OL]. http//wiki.swarm.org/examples-heatbugs.html.
  • 10Pietro Terna. Economic Simulations in Swarm: Congnitive Agents Behaving in A Simple Stock Market Structure[C]. Kluwer Academic Publishers, 2001: 89-110.

二级参考文献22

  • 1William E B, Jill H S. Vulnerability/Lethality Modeling of Armored Combat Vehicles-Status and Reeommendations[R]. AD-A261 691,1993.
  • 2Paul H D, Michael W S. Current Simulation Methods in Military Systems Vulnerability Assessment[R]. ADA-A299 647,1990.
  • 3Dinovitzer A S, Szymezak M, Steele M. Characterization of Behind-Armour Debris [C]// 16th International Symposium on Ballistics, San Francisco, 1996.
  • 4Marcus D. Swarm Development Group: An Open Framework for Agent-based Modeling [EB/OL]. http ://www. santafe, edu/- mgd/lanl/framework. html, 2006-03-09.
  • 5Nelson M. The Swarm Simulation System: A Toolkit For Building Multi-Agent Simulations [EB/ OL]. http://www, santafe, edu/projects/swarm, 2005.
  • 6Pietro T. Economic Simulations in Swarm: Congnitive Agents Behaving in A Simple Stock Market Structure [ M ]. Kluwer Academic Publishers, 2001.
  • 7VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8李淘深.人工智能[M].重庆:重庆大学出版社,2002.4.
  • 9Bak P,Paczuski M,Shubik M.Price Variation in a Stock Market with Many Agents[J].Physica A (S0378-4371).1997,246(3-4):430-453.
  • 10Lux T,M Marchesi.Scaling and criticality in a stochastic multi-agent model of a financial market[J].Nature (S0028-0836).1999,397(6719):498-500.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部