期刊文献+

Al-4.6Zn-2.58Mg合金热变形工艺研究

Study on forging technology of Al-4.6Zn-2.58Mg aluminum alloy
下载PDF
导出
摘要 在工业化生产条件下,采用半连续铸造、自由锻造、固溶和时效处理技术制备Al-4.6Zn-2.58Mg合金锻件。采用热加工模拟方法优化该合金的热加工工艺。试验结果表明:该合金高温压缩变形时的流变应力随变形温度的升高而减小,随变形速率的提高而增大。合金在420℃以下热变形,热变形组织主要为动态回复组织;在420℃以上热变形,热变形组织有动态再结晶发生。在400℃-420℃之间热压缩变形,变形抗力比较小;380℃-420℃时铸态塑性最好。该合金较适宜的热加工温度范围为400℃-420℃。 The Al-4.6Zn-2.58Mg alloy forgings have been prepared by processes of semi-continuous casting,free forging,solid solution and aging heat treatment at industry production condition.Thermal processing technology has been optimized by using of thermal processing simulation method.The results show that,at high temperature compressing deformation condition,the deformation flow stress of Al-4.6Zn-2.58Mg aluminum alloy decreases with deformation temperature increasing,and the stress increases with strain rate increasing.When thermal deformation temperature is under 420℃,the thermal deformation structure will be dynamic recovery structure mainly,and re-crystallization appears in the thermal deformation structure while the deformation temperature higher than 420℃.During 400℃-420℃,the thermal deformation resistance is smaller.The best plastic property of the cast ingot appears at 380℃-420℃.The suitable hot deformation temperature of the alloy is at 400℃-420℃.
作者 王贵福
出处 《轻合金加工技术》 CAS 北大核心 2011年第9期59-64,共6页 Light Alloy Fabrication Technology
关键词 Al-4.6Zn-2.58Mg合金 热模拟 热塑性 工业化生产 Al-4.6Zn-2.58Mg alloy thermal processing simulation thermal plasticity industry production
  • 相关文献

参考文献9

  • 1SRIVATSAN T S. Microstructure, tensile deformation and fracture behavior of aluminum alloy 7055 [ J ]. Journal of Materials Sci.. 1997,32:2883.
  • 2SRIVATSAN T S. The tensile response and fracture behavior of an A1-Zn-Mg-Cu alloy, influence of tempera- ture [ J ]. Journal of Materials Engineering and Performance, 1997,6 ( 3 ) : 349 - 351.
  • 3LUKASAK D A. Strong aluminum alloy shaves airframe weight [ J]. Advanced Materials & Processes, 1991 (10) :46 -49.
  • 4HATCH JE.铝的性能及物理冶金[M].刘静安,戴玲宝,译.科学技术文献出版社重庆分社,1990:126-127.
  • 5林高用,张颖,杨立斌,彭大暑.时效制度对LC52铝合金组织与性能的影响[J].金属热处理,2004,29(10):32-35. 被引量:15
  • 6YAO X X. The strain rate sensitivity of flow stress and work hardening rate in a hot deformed Al-1.0Mg Alloy [ J]. J Mat Sci ,2000,19:743 - 744.
  • 7关德林.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989..
  • 8SHEPPARD T. Dynamic recrystallization in Al-7 Mg alloy [ J ]. Met. Sci, 1983,17 (10) :481 - 490.
  • 9SHEPPARD T, JACKSON A. Constitutive equations for use in prediction of flow stress during extrusion of alu- minum alloys [ J ]. Mater. Sci. Technot, 1997,13 : 203 - 209.

二级参考文献8

  • 1Yunqing Li (Department of Planning and Developmet, State Nonferrous Metals Industry Administration, Beijing 100814, China).Microstructure and Strain Fatigue Dislocation Structure of 7075-RRA Aluminum Alloy[J].Rare Metals,2001,20(1):52-57. 被引量:2
  • 2[3]Tsai T C, Chang J C, Chuang T H. Stress corrosion cracking of super-plastically formed 7475 aluminum alloy [J]. Metall. Mater. Trans. A, 1996, 28A (10): 2113-2121.
  • 3[4]Talianker M, Cina B. Retrogression and re-ageing and the role of dislocation in the stress corrosion of 7000-type aluminum alloys [J].Metall.Trans.A,1989,20A (10):2087-2092.
  • 4[6]Reboul M C, Bouvaist J. Exfoliation Corrosion mechanisms in the 7020 aluminum alloys [J]. Werkstoffe und korrosion, 1979,(30): 700-708.
  • 5[9]张颖.LC52铝合金的组织与性能研究[D].长沙:中南大学,2003.
  • 6[2]Viana F, Pinto A M P. Retrogression and re-ageing of 7075 aluminum alloy: micro-structural characterization [J]. Journal of Mater. Processing Tech., 1999,(92-93): 54-59.
  • 7刘玲霞,成建国.LC52铝合金锻造工艺及性能[J].锻压技术,1999,24(2):13-15. 被引量:11
  • 8刘继华,李荻,刘培英,郭宝兰,朱国伟.时效和回归处理对7075铝合金力学及腐蚀性能的影响[J].材料热处理学报,2002,23(1):50-53. 被引量:49

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部