期刊文献+

类钙粘蛋白对Cry3A毒素杀虫活性的影响 被引量:3

The effect of cadherin on the insecticidal activity of Cry3A toxin
原文传递
导出
摘要 将克隆的黄粉虫类钙粘蛋白基因片段在大肠杆菌中表达纯化,并分析其对Cry3A毒素杀虫活性的影响,从而探讨黄粉虫类钙粘蛋白对Cry3A毒素杀虫活性的增效作用。黄粉虫类钙粘蛋白基因片段在大肠杆菌中表达产物为包涵体,经尿素变性后,用亲和纯化法可得到较纯的重组蛋白;随着类钙粘蛋白片段与Cry3A质量比值的升高,Cry3A毒素对黄粉虫的杀虫活性也逐步提高,当其比值为1时,活性达到最大,提高了2.5倍,而黄粉虫类钙粘蛋白片段对Cry3Am的杀虫活性却没有显著性影响。研究表明,黄粉虫类钙粘蛋白对Cry3A毒素的杀虫活性具有增效作用。 In order to analyze the synergistic effect of cadherin from Tenebrio molitor to Cry3A toxin,the gene fragment of cadherin cloned from the midgut of T.molitor was expressed in Escherichia coli to evaluate the effect of cadherin on the insecticidal activity of Cry3A toxin.The expressed product of cadherin-Tm gene fragment is inclusion body,which is denatured by urea,followed by affinity chrymatography.The insecticidal activity of Cry3A toxin is enhancing corresponding to the increasing of the mass ratio of cadherin-Tm fragment to Cry3A toxin.When the ratio is about 1,there is a maximum insecticidal activity of Cry3A toxin,which is 2.5 fold higher than that of Cry3A toxin.However,cadherin-Tm fragment has no effect on the insecticidal activity of Cry3Am.This research indicated that cadherin-Tm fragment has enhancing effect just on Cry3A toxin.
出处 《植物保护学报》 CAS CSCD 北大核心 2011年第5期466-470,共5页 Journal of Plant Protection
基金 北京市自然科学基金(5092007,5112009)
关键词 黄粉虫 类钙粘蛋白 Cry3A毒素 杀虫活性 Tenebrio molitor cadherin-like protein Cry3A toxin insecticidal activity
  • 相关文献

参考文献20

  • 1Schnepf E, Crickmore N, van Rie J, et al. Bacillus thuringien- sis and its pesticidal crystal proteins. Microbiology and Molecu- lar Biology Reviews, 1998, 62 (3) : 775 -806.
  • 2Hofte H, Whiteley H R. Insecticidal crystal proteins of Ba- cilllus thuringiensis. Microbiological Reviews, 1989, 53 (2) : 242 - 255.
  • 3Vaeck M, Reynaerts A, Hofte H, et al. Transgenic plants protected from insect attack. Nature, 1987, 328(6125): 33 - 37.
  • 4Janmaat A F, Myers J. Rapid evolution and the cost of resist- ance to Bacillus thuringiensis in greenhouse populations of cab- bage loopers, Trichoplusia hi. Proceedings of the Royal Society of London, Series B, Biological Sciences, 2003, 270(1530) : 2263 - 2270.
  • 5Tabashnik B E. Implications of gene amplification for evolution and management of insecticide resistance. Journal of Economic Entomology, 1990, 83 (4). 1170 - 1176.
  • 6Luo S D, Wang G R, Liang G M, et al. Binding of three Cryl A toxins in resistant and susceptible strains of cotton boll- worm (Helicoverpa armigera ). Pesticide Biochemistry and Physiology, 2006, 85(2): 104-109.
  • 7Zhang S P, Cheng H M, Gao Y L, et al. Mutation of an amin- opeptidase N gene is associated with Helicoverpa armigera resist- ance to Bacillus thuringiensis CrylAc toxin. Insect Biochemistry and Molecular Biology, 2009, 39(7) : 421 -429.
  • 8Jurat-Fuentes J L, Karumbaiah L, Jakka S R K, et al. Re- duced levels of membrane-bound alkaline phosphatase are com- mon to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One, 2011, 6(3) : e17606.
  • 9Bravo A, Soberon M. How to cope with insect resistance to Bt toxins? Trends in Biotechnology, 2008, 26(10) : 573 -579.
  • 10Chen J, Hua G, Jurat-Fuentes J L, et al. Synergism of Bacil- lus thuringiensis toxins by a fragment of a toxin-binding cadher- in. Proceedings of the National Academy of Sciences of USA, 2007, 104(35) : 13901 -13906.

二级参考文献27

  • 1Schnepf E, Crickmore N, Van Rie J, I.,reclus D, Baum J, Feitelson J, Zeigler D R, Dean D H. Bacillus thuringiensis and its pestieidal crystal proteins. Microbiology and Molecular Biology Reviews, 1998, 62(3): 775-806.
  • 2Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacilllus thuringiensis. Microbiological Reviews, 1989, 53(2): 242-255.
  • 3Carroll J, Convents D, Van Dammc J, Boets A, Van Ri J, Ellar D J Intramolecular proteolytic cleavage of Bacillus tkuringiensis Cry3A 6-endotoxin may facilitate its coleopteran toxicity. Journal of Invertebrate Pathology, 1997, 70(1 ): 41-49.
  • 4Carroll J, Li J, Ellar D J. Protcolytic processing of a coleopteran-specifie γ-endotoxin produced by Bacillus thuringiensis var. tenebrionis. Biochemical Journal, 1989, 261 (I): 99-105.
  • 5Koller C N, Bauer L S, Hollingworth R M. Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native 6-endotoxin crystals. Biochemical and Biophysical Research Communications, 1992, 184(2): 692-699.
  • 6Li J, Carroll J, Ellar D J. Crystal structure of insecticidal 8-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature, 1991, 353(6347): 815-821.
  • 7Wu S J, Dean D H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CrylIIA δ-endotoxin. Journal of Molecular Biology, 1996, 255(4): 628-640.
  • 8Burton S L, Ellar D J, Li J, Derbyshire D J. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Journal of Molecular Biology, 1999, 287(5): 1011-1022.
  • 9Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz J L, Brousseau R, Cygler M. Bacillus thuringiensis CrylA(a) insecticidal toxin: crystal structure and channel formation. Journal of Molecular Biology, 1995, 254: 447-464.
  • 10Morse R J, Yamamoto T, Stroud R M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure, 2001,9: 409-417.

共引文献2

同被引文献24

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部