期刊文献+

Ca^+催化的N_2O+CO反应机理的理论研究 被引量:4

Theoretical investigation on the reaction mechanism of N_2O+CO catalyzed by Ca^+
原文传递
导出
摘要 采用B3LYP/cc-pVTZ理论水平系统研究了Ca+离子催化N2O+CO→N2+CO2反应的微观机理.反应分两步进行:第一步Ca+夺取N2O中的O原子有两条反应通道,其中优势通道为Ca+金属离子与N2O分子中O作用,形成线性分子复合物,活化N2O分子中的N—O键,之后的反应路径为O—N键断裂机理;第二步为CaO+金属氧化物阳离子与CO反应,反应过程遵循插入消去机理.纵观整个Ca+金属离子催化过程,计算结果表明反应不需要吸收能量,大约放热358 kJ.mol-1,所得计算结论与实验结果吻合,Ca+是将N2O,CO转化为N2和CO2这一循环催化反应的理想金属阳离子催化剂. The mechanism of the gas-phase reaction N2O and CO catalyzed by Ca^+ has been investigated on doublet electronic state potential energy surface. The reactions are studied by using the B3LYP density functional method and the cc-pVTZ basis set. Our calculated results show that both steps of the reaction are exothennic and the overall exothermicity is 358 kJ· mol^-1, which are close to the experimental observations. The O-atom affinities of the correlative species were calculated, which testified that the cyclic, catalytic function of Ca^ + was thermodynamically allowed. Our results may be helpful for future experimental investigation of the title reaction.
出处 《分子科学学报》 CAS CSCD 北大核心 2011年第5期354-357,共4页 Journal of Molecular Science
基金 牡丹江师范学院博士科研启动基金资助项目(MSB200907 MSB200908) 牡丹江师范学院教学改革工程建设项目(11-XJ12063) 黑龙江省教育厅科学技术研究项目(11551511)
关键词 N2O 金属阳离子 反应机理 密度泛函理论 N2O metal cation reaction mechanism density functional theory
  • 相关文献

参考文献14

  • 1NIU S, HALL M B [J]. Chemical Reviews,2000,100(2) :353-406.
  • 2TORRENT M,SOLA M, FRENKING G. [J]. Chemical Reviews,2000,100(2) :439-494.
  • 3PLANE J M, VONDRAK T, BROADLEY S, et al. [ J]. J Plays Chem A, 2006,110,7874-7881.
  • 4潘亚茹,唐沂珍,孙静俞,王荣顺.CH_4与NO_2反应的微观机理及动力学性质的理论研究[J].分子科学学报,2009,25(6):379-384. 被引量:5
  • 5左明辉,黄旭日,崔术新,庄志萍,陈玉锋.N_2O与氧负离子微观反应机理的理论研究[J].分子科学学报,2010,26(4):272-275. 被引量:6
  • 6BOHME D K,SCHWARZ H [J] .Angew Chem Int Ed,2005,44(16):2336-2354.
  • 7LAVROV V V, BLAGOJEVIC V, KOYANAGI G K, et al. [ J ]. J Phys Chem A, 2004,108 ( 26 ) : 5610-5624.
  • 8BLAGOJEVIC V, ORLOVA G, BOHME D K [J].J Am Chem Soc, 2005,127(10) : 3545-3555.
  • 9GERDING M, ALPERS M, VON ZAHN, U, et al. [ J ]. J Geophys Res- Space Phys, 2000,105 ( 12 ) : 27131-27146.
  • 10FRISCH M J, TRUCKS, G W, SCHLEGEL H B, et al. [ CP]. Gaussian 03, Gaussian Inc, Pittsburgh PA, 2003.

二级参考文献56

  • 1QIN S,YANG H Q. [J] .J Theo & Comput Chem,2008,7(2) : 189-203.
  • 2ESPINOSA G J, BRAVO J L, RAN GEL C. [ J]. J Phys Chem A,2007,111 (14):2761-2771.
  • 3SU Z S,QIN S. [J] .J Mol Stru:Theochem,2006,778(1 - 3) :41-48.
  • 4YANG H Q, HU C W,QIN S. [J]. Chem Phys,2006,330(3):343-348.
  • 5RANGEL C,CORCHADO J C.[J].J Phys Chem A,2006,110(35) ; 10375-10383.
  • 6LEVANDIER D J, DRESSLER R A. [ J ]. J Phys Chem A, 2004,108 (45):9794-9804.
  • 7HU C W,YANG,H Q,WONG N B. [J] .J Plays Chem A,2003,107(13) :2316-2323.
  • 8MORS V,ARGUELLO G A,HOFFMANN A. [J] .J Phys Chem, 1995,99(43):15899-15910.
  • 9YAMAGUCHI Y, SHIMOMURA S. [ J]. J Phys Chem A, 1999,103 (41) : 8272-8278.
  • 10WANG Y C, ZHANG J H, GENG Z Y. [ J ]. Chem Phys Lett, 2007,446 ( 1 - 3) : 8-13.

共引文献7

同被引文献66

  • 1BARTON TJ,BURNS G T. [J]. J Am Chem Soc,1978,100(16) :5246-5246.
  • 2ANDO W,TANIKAWA H,SEKIGUCHI A. [J]. Tetrahedron Lett,1983,24(39) :4245-4248.
  • 3WAKITA K,TOKITOH N,OKAZAKI R,et al. [J]. J Am Chem Soc,2000,122(23) :5648-5649.
  • 4WAKITA K,TOKITOH N,OKAZAKI R,et al. [J]. Angew Chem Int Ed,2000,39(3) :634-636.
  • 5TOKITOH N. [J]. Acc Chem Res,2004,37(2) :86-94.
  • 6DHEVI D M,PRIYAKUMAR U D,SASTRY G N. [J]. J Mol Struct-Theochem,2002,618(3) : 173-179.
  • 7SANTOS J C,FUENTEALBA P. [J]. Chem Phys Lett,2007 ,443(4-6) :439-442.
  • 8MRKL G,RUDNICK D. [J]. Tetrahedron Lett, 1980,21(15) : 1405-1408.
  • 9MRKL G,RUDNICK D,SCHULZ R. [J]. Angew Chem Int Ed, 1982,21(3) :221^221.
  • 10NAKATA N,TAKEDA N,TOKITOH N. [J]. J Am Chem Soc,2002,124(24) :6914-6920.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部