期刊文献+

一种多约束的密度聚类算法的研究 被引量:3

Research on Density Clustering Algorithm with a Multiple Constraints
下载PDF
导出
摘要 针对传统的密度聚类算法不能处理带有多约束条件的问题,在现有的密度聚类算法的基础上,提出了一个带有多约束条件限制的密度聚类算法。该算法将多约束条件引入到密度聚类分析中,并分析了多约束条件对聚类结果的影响。实验表明该算法在多约束条件下,可有效完成对数据点的聚类并且效果较好,为现实情况中处理多约束聚类提供了良好的理论支持。 Traditional clustering algorithms based on density can not overcome the shortage with a variety of constraints in the existing clustering algorithm based on the density proposed.This paper proposed a clustering algorithm based on density with a variety of constraints.The algorithm introduces a variety of constraints into clustering algorithm to analyze the clustering results affected by a variety of constraints.Experimental results show that the algorithm in a multi-constrained condition can complete a cluster analysis of the data points,and can obtain a better clustering results,provides a good theoretical support for really dealing with multiple constraints clustering.
出处 《计算机科学》 CSCD 北大核心 2011年第B10期143-145,164,共4页 Computer Science
关键词 多约束条件 密度 聚类 Multiple constraints limit Density Clustering
  • 相关文献

参考文献14

  • 1Guha S, Rastogi R, Shim K CURE: An Efficient Clustering Algorithm for Large Database[C]//Proceeding of the ACM SIG- MOlD Conference Seattle, 1998: 73-84.
  • 2Guha S,Rastogi R, Shim K. ROCK: A Robust Clustering Algorithm for Categorical Attributes[C] ffProeeedings of the 15th ICDE. Sydney, 1999 : 512-521.
  • 3Karypis G, Hart E-H, Kumar V. CHAMELEON:A Hierarchical Clustering Algorithm Using Dynamic Modeling[J]. IEEE Computer, 1999,32(8) : 68-75.
  • 4Ester M, Kriegel H-P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Database with Noise[C]//Proceedings of the 2nd ACM SIGKDD, Portland, 1996:226-231.
  • 5Hinneburg A, Keim D. An Efficient Approach to Clustering Large Multimedia Databases with Noise[C]//Proceedings of the 4th ACM SIGKDD. New York, 1998 : 58-65.
  • 6Tung A K H, Hou J, Han J. Spatial Clustering in the Presence of Obstacles[C]//Proceedings of the 17th ICDE. Heidelberg, 2001:359-367.
  • 7Han J, Kamber M, Tung A K H. Spatial Clustering Methods in Data Mining: A Survey [C] // Geographic Data Mining and Knowledge Discovery. 2001.
  • 8Kohonen T. Self-Organizing Maps[M]. Springer Series in Information Sciences, 2001,30.
  • 9Cao Yong-qiang, Wu Jian-hong. Dynamics of Projective Adaptive Resonance Theory Model: The Foundation of PART Algorithm [J]. IEEE Transactions on Neural Network, 2004, 15(2):245-260.
  • 10Brown D, Huntley C. A Practical Application of Simulated Annealing to Clustering[R]. University of Virginia, 1991.

同被引文献25

  • 1倪维健,黄亚楼,李飞,刘赏.一种基于加权多代表点的层次聚类算法[J].计算机科学,2005,32(5):150-154. 被引量:5
  • 2田地,王世卿.数据挖掘中基于密度和距离聚类算法设计[J].计算机技术与发展,2006,16(10):49-51. 被引量:5
  • 3孙爽,章勇.一种基于语义相似度的文本聚类算法[J].南京航空航天大学学报,2006,38(6):712-716. 被引量:18
  • 4韩家炜 范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 5孟海东,宋飞燕,郝永宽.基于密度与划分方法的聚类算法设计与实现[J].计算机工程与应用,2007,43(27):171-174. 被引量:4
  • 6Dikshit P, Crossley W. Airport noise model suitable for fleet-level studies[C]//9th AIAA Aviation Tech- nology, Integration and Operations Conference, Air- craft Noise and Emissions Reduction Symposium. Hilton Head, South Carolina, USA: AIAA, 2009: 138-146.
  • 7Koperski K, Han J, Adhikary J. Mining knowledge in geographical data[J]. Transaction on Knowledge and Data Engineering, 1993, 23(10).. 903-913.
  • 8Jandl B, Rokitansky C. Prediction of noise exposure levels using simulated flight trajectories[C]//30th Digital Avionics Systems Conference. Seattle, Wash- ington, USA..AIAA, 2011: 1-16.
  • 9Shtern M,Tzerpor V. Refining clustering evaluation using structure indicators[C]// International Confer- ence on Software Maintenance. Edmonton, Alberta, Canada: ICSM, 2009: 297-305.
  • 10Reza S M, Teh Y W, Lahsasna A. Applied data mining approach in ubiquitous world of air transpor- tation[C]//4th International Conference on Comput- er Sciences and Convergence Information Technolo- gy. Seoul, Korea.. ICCIT, 2009: 1218-1222.

引证文献3

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部