期刊文献+

关于修正冒泡排序网络的一簇猜想 被引量:7

One Variety Conjectures of Modified Bubble Sort Network
下载PDF
导出
摘要 修正冒泡排序网络是互连网络设计中的一个重要的Cayley图模型,关于修正冒泡排序网络的一簇猜想如下:对于任意的自然数n≥3,修正冒泡排序网络Yn是i个边不交的哈密尔顿圈以及n-2i个完美对集的并,其中1≤i≤︱n/2︱。证明了当i=1,2时,这个猜想是正确的。 Modified bubble sort networks are important cayley graphs model in networks design.One variety conjectures of modified bubble sort networks were proposed as follows:for any integer n≥3,modified bubble sort networks Yn are a union of i edge-disjoint hamiltonian cycles and n-2i perfect matchings of Yn,and 1≤i≤︱n/2︱.We proved the conjectures are true for i=1,2.
出处 《计算机科学》 CSCD 北大核心 2011年第B10期265-267,275,共4页 Computer Science
基金 甘肃省自然科学基金(ZS991-A25-017-G)资助
关键词 CAYLEY图 修正冒泡排序网络 哈密尔顿圈 Cayley graph Modified bubble sort network Hamiltonian cycle
  • 相关文献

参考文献11

  • 1Bondy J A,Marty U S R. Graph Theory[M]. Lodon: Springer, 2008.
  • 2Cayley A. The theory of graphs, graphical representation. Mathematical Paper[J].Cambridge, 1895,10 : 26-28.
  • 3师海忠,路建波.关于互连网络的几个猜想[J].计算机工程与应用,2008,44(31):112-115. 被引量:21
  • 4Akers S B, Krishnamurthy B. A group-theoretic model for symmetric interconnection network[J]. IEEE Transaction on Computers, 1989,38(4):555-565.
  • 5Lakshmivarahan S, Jwo J-S, Dhall S K. Syrmnetry in interconnection netwerks based on Cayley graphs of permutation groups:A survey[J]. Parallel Computing, 1993,19 : 361-407.
  • 6Araki T, Kikuchi Y. Edge-bipancyclicity and edge-fault-tolerant bipancyclicity of bubble-sort graphs[J]. Information Processing Letters, 2006,100 : 52-59.
  • 7Araki T, Kikuchi Y. Hamiltonion laceablility of bubble-sort graphs[J]. Information Sciences, 2007,177 : 2679-2691.
  • 8Shi Hai-zhong, Niu Pan-feng. Hamiltonian deconposition of some intercoonection networks[A]//Proceed of the 3th Aunnal International Conference on Combinatorial Optimization and Applications[C]. Berlin: Springer, 2009: 231-237.
  • 9马继勇,师海忠,牛攀峰.低维修正冒泡排序网络一个猜想的证明[J].甘肃科学学报,2011,23(1):57-60. 被引量:4
  • 10师海忠,马继勇,牛攀峰.修正冒泡排序网络的边偶泛圈性[J].数学的实践与认识,2011,41(8):208-216. 被引量:2

二级参考文献22

  • 1Akers S B,Krishnamurthy B.A group-theoretic model for symmetric interconnection networks[J].IEEE Trans Computers, 1989,38 (4) : 555-565.
  • 2师海忠.关于Star-网络的一个猜想.兰州大学学报:自然科学版,2007,43:199-200.
  • 3Bondy J A,Murty U S R.Graph theory with applications[M].New York : American Elserer, 1976.
  • 4Bigs N L.Algebraic graph theory[M].Cambridge:Cambridge University Press, 1993.
  • 5Bagherzadeh N,Dowd M,Nassif N.Embedding an arbitrary tree into the star graph[J].IEEE Trans Comput,1996,45:475-481.
  • 6Day K,Tripathi A.A comparative study of topological properties of hypercubes and star graphs[J].IEEE Trans Parallel Distrib Syst, 1994,5:31-38.
  • 7Jwo J S,Lakshmivarahan S,Dhall K S.Embedding of cycles and grids in star graphs[J].J Circuits Syst Comput, 1991,1(1 ):43-74.
  • 8Hsieh S Y,Chen G H,Ho C W.longest fault-free paths in star graphs with edge fauhs[J].IEEE Trans Comput, 2001,50(9) :960- 971.
  • 9Li T K.Cycle embedding in star graphs with edg fauhs[J].Appl Math Comput,2005,167:891-900.
  • 10Xu M,Hu X D,Zhu Q.Edge-bipancyclicity of star graphs under edge-fault tolerant[J].Appl Math Comput, 2006,183 : 972-979.

共引文献21

同被引文献70

  • 1刘晓平,吴敏,金灿.采用图分解的特征识别算法研究[J].工程图学学报,2010,31(1):67-71. 被引量:8
  • 2田方,徐俊明.关于图的距离控制数的上界(英文)[J].中国科学技术大学学报,2004,34(5):529-534. 被引量:2
  • 3张禾瑞.近世代数基础[M].北京:高等教育出版社,1978.94-95.
  • 4Bondy J A, Marty U S R. Graph Theory[M]. London: Springer,2008.
  • 5Cayley A. The theory of graphs, graphical representation[J]. Mathematical Paper,Cambridge, 10(1895) :26-28.
  • 6Akers S B, krishnamurthy B. A group-theoretic model for symmetric interconnection networks[J]. IEEE Transactions on Computers, 1989,38(4): 555-565.
  • 7Lakshmivarahan S,Jwo J-S, Dhall S K. Symmetry in intercon- nection networks based on Caylay graphs of permutation groups.. A survey [J]. Parallel Computing, 1993,19 : 361-407.
  • 8Gauyacq G. On quasi-cayley graphs. Discrete Applied Mathematics, 1997(77): 43-58.
  • 9Shi Hai-zhong, Niu Pan-feng. Hamiltonian deconposition of some interconnection networks [A]//Proceed of 3th Aunnal International conference on Combinatorial Optimization and Applications. (Ding-zhu Du etc) [C]. Berlin: Springer, 2009,231-237.
  • 10Shi Hai-zhong, Niu Pan-feng, Lu Jian-bo. One conjecture of bubble-sort graph[J]. Information Processing Letters, 2011, 111: 926-929.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部