期刊文献+

硼、氮掺杂C_(20)的结构及其稳定性

The structure and stability of boron doping C_(20) and nitrogen doping C_(20)
下载PDF
导出
摘要 根据量子化学理论,应用从头计算Hartree-Fock(HF)方法在6-31G(d)基组水平上对C20及硼、氮掺杂的C20进行几何构型全优化.比较了C20及硼、氮掺杂的C20的基态能量、能隙及结合能的大小.此外,还计算了掺杂分子的最强红外光谱及其对应的振动频率,并给出振动模式.结果表明:掺杂后,C19B和C18B2的能量升高了;与B原子相连的键的长度均增加;单位原子结合能的计算表明单原子掺杂要比双原子掺杂稳定,而硼掺杂要比氮掺杂稳定;前线轨道理论计算表明硼、氮掺杂后C20的能隙增大. The ground state of C20,the boron and nitrogen doping C20 are studied by applying the Hartree-Fock(HF) method.The ground state energy,energy gap and binding energy are calculated and compared between C20 and doping C20.The strongest infrared intensity and frequency are calculated and the corresponding vibration modes are distinguished additionally.It is found that the energies of C19B and C18B2 are enhanced and the bonds relatted with boron are enlarged.The calculation of binding energy reveals that the single atom doping C20 is more stable than the double atoms doping C20 and boron doping C20is more stable than nitrogen doping C20.Furthermore,it is found that the energy gap of C20 is increased after doping.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期27-30,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金(青年科学基金)资助项目(11005050) 江南大学自主科研项目(JUSRP10911)
关键词 量子化学 富勒烯 能量 能隙 结合能 quantum chemistry Fullerene energy energy gap binding energy
  • 相关文献

参考文献12

  • 1KROTO H W, HEATH J R, O'BRIEN S C, et al. C60 : buck minster fullerene [J]. Nature, 1985, 318(6042) : 162-163.
  • 2刘书芝,唐光诗.[60]富勒烯衍生物的对称性、碳笼结构与^(13)C NMR谱[J].化学进展,2004,16(4):561-573. 被引量:17
  • 3WANG Y. Photoconductivity of fullerene-doped polymers [J]. Nature, 1992, 356(6370): 585-587.
  • 4詹梦雄,余荣清,郑标练,程大典,郑兰荪.锌酞菁掺杂C_(60)在InP电极上的光电性能研究[J].电化学,1995,1(3):362-365. 被引量:1
  • 5PRINZBACH H, WEILER A, LANDENBERGER P, et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20[J]. Nature, 2000, 407(6800): 60-63.
  • 6MUKHERJEE S, BAURI A K, BHATTACHARYA S. Spectroscopic and theoretical insights on supramolecular complexation of C60 and C70 with a designed bisporphyrin [J]. Spectrochim Acta Part A: Mol & Biomol Spectroscopy, 2010, 77(1): 64 -72.
  • 7SHUKLA M K, LESZCZYNSKI J. Fullerene (C60) forms stable complex with nucleic acid base guanine [J]. Chem Phys Lett, 2009, 469(1/3), 207-209.
  • 8PATTANAYAK J, KAR T, SCHEINER S. Substitution patterns in mono-BN-fullerenes: C, (n= 20, 24, 28, 32, 36 and 40) [J]. J PhysChem A, 2004, 108(38): 7681-7685.
  • 9CHEN Z, MA K, PAN Y, et al. Theoretical studies on the BN substituted fullerenes C70 2x(BN)x(x=1-3)- isoelectronic equivalents of C70[J]. J Mol Struct: Theochem, 1999, 490(1/3): 61-68.
  • 10PATTANAYAK J, KAR T, SCHEINER S. Boron-nitrogen (BN) substitution of fullerenes.. C60 to C12B24 N24 CBNball[J]. J PhysChem A, 2002, 106(12): 2970 2978.

二级参考文献73

  • 1Kratschmer W, Lamb L D, Fostriropoulos K, Huffman D R. Nature, 1990, 347:354
  • 2Hirsch A. Synthesis, 1995, (8): 895-913
  • 3Taylor R, Hare J P, Abdul-Sada A K, et al. J. Chem. Soc.,Chem. Commun., 1990, 1423-1425
  • 4Tayer R, Walton D R M. Nature, 1993, 363:685
  • 5Matsuzawa N, Dixon D A, Fukunaga T. J. Phys. Chem., 1992,96(19): 7594-7604
  • 6Zhou D J, Gan L B, Tan H S, et al. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 99:37-43
  • 7Gan L B, Zhou D J, Luo C P, et al. J. Org. Chem., 1996, 61(6): 1954-1961
  • 8Guldi D M, Luo C P, Swartz A. J. Org. Chem.,2002,67(4):1141-1152
  • 9Wu S H, Sun W Q, Zhang D W, et al. J. Chem. Soc. , Perkin Trans. 1, 1998, (10): 1733
  • 10Ohno M, Sato H, Eguchi S. Synlett, 1999, (2): 207-209

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部