期刊文献+

一类二阶逼近集合和二阶逼近导数(英文)

A Class of second-order approximating sets and derivatives
下载PDF
导出
摘要 首先引入了一类二阶逼近集合和二阶逼近导数.然后讨论了这些二阶逼近集合之间的关系.最后利用一种叫做二阶逼近Φ相依集合,研究了一类集值映射的二阶可微性. A class of second-order approximating sets and second-order derivatives were introduced.The relationships among second-order approximating sets were discussed.Finally, by using so-called second-order approximating Φ-contingent set,second-order differential properties of a class of set-valued maps were investigated.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期49-59,共11页 Journal of East China Normal University(Natural Science)
基金 重庆大学中央高校基本科研业务费科研专项研究生科技创新基金(CDJXS10100010)
关键词 二阶逼近导数 二阶逼近集合 可微性质 second-order approximating derivatives second-order approximating sets differential properties
  • 相关文献

参考文献15

  • 1AUBIN J P, FRANKOWSKA H. Set-Valued Analysis [M]. Boston: Birkhauser, 1990.
  • 2AUBIN J P, EKELAND I. Applied Nonlinear Analysis [M]. New York: John Wiley and Sons, 1984.
  • 3JAHJ J, KHAN A A, ZEILINGER P. Second-order optimality conditions in set optimization [J]. Journal of Optimization Theory and Applications, 2005, 125: 331-347.
  • 4KALASHNIKOV V, JADAMBA B, KHAN A A. First and second-order optimality conditions in set optimization [M]// Optimization with Multivalued Mappings. New York: Springer, 2006 (2): 265-276.
  • 5LI S J , TEO K L, YANG X Q. Higher-order optimaltiy conditons for set-valued optimization [J]. Journal of Optimization Theory and Applications, 2008, 137: 533-553.
  • 6LI S J, CHEN C H. Higher order optimality condtions for Henig efficient solutions in set-valued optimization [J]. Journal of Mathematical Analysis and Applications, 2006, 323: 1184-1200.
  • 7KHANH P Q, TUAN N D. Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization [J]. Journal of Optimization Theory and Applications, 2008, 139: 243-261.
  • 8TANINO T. Sensitivity analysis in multiobjective optimization [J]. Journal of Optimization Theory and Appli- cations, 1988, 56: 479-499.
  • 9SHI D S. Contingent derivative of the perturbation map in multiobjective optimization [J]. Journal of Optimiza- tion Theory and Applications, 1991, 70: 385-396.
  • 10SHI D S. Sensitivity analysis in convex vector optimization [J]. Journal of Optimization Theory and Applications, 1993, 77: 145-159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部