摘要
讨论了李代数■以及由这个李代数诱导的Leibniz代数■的一些性质,主要从不变双线性型和导子看这两个代数之间的差异,证明了在特定条件下两者的不变双线性型维数是一致的.为进一步确定李代数■和■的差异,讨论了由■诱导的一类重要的李代数■;最后证明了,如果■是有限维半单李代数,■和■是同构的.
By the definition of Leibniz algebra,we showed thatG was a Leibniz algebra whenG was a Lie algebra.We also proved thatG andG have the same dimension of invariant symmetric bilinear forms in a special case,and the dimension of the derivation algebra ofG is always less than that ofG.G is one of the important Lie algebra induced byG,andG is isomorphic toG whenG is a finite dimensional semi-simple Lie algebra.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第5期93-102,共10页
Journal of East China Normal University(Natural Science)