期刊文献+

李代数的张量积所确定的Leibniz代数

Leibniz algebras defined by tensor product of Lie algebras
下载PDF
导出
摘要 讨论了李代数■以及由这个李代数诱导的Leibniz代数■的一些性质,主要从不变双线性型和导子看这两个代数之间的差异,证明了在特定条件下两者的不变双线性型维数是一致的.为进一步确定李代数■和■的差异,讨论了由■诱导的一类重要的李代数■;最后证明了,如果■是有限维半单李代数,■和■是同构的. By the definition of Leibniz algebra,we showed thatG was a Leibniz algebra whenG was a Lie algebra.We also proved thatG andG have the same dimension of invariant symmetric bilinear forms in a special case,and the dimension of the derivation algebra ofG is always less than that ofG.G is one of the important Lie algebra induced byG,andG is isomorphic toG whenG is a finite dimensional semi-simple Lie algebra.
作者 颜倩倩
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期93-102,共10页 Journal of East China Normal University(Natural Science)
关键词 LEIBNIZ代数 不变对称双线性型 张量积 导子 边染色 最大度 第一类图 Leibniz algebra invariant symmetric bilinear form tensor product derivation
  • 相关文献

参考文献13

  • 1BLOCH A. On a generalization of Lie Algebra [J]. Math in USSR Doklady, 1965, 165(3): 471-473.
  • 2LODAY J L. Cyclic Homology [M]. Berlin: Springer-Verlag, 1992.
  • 3LODAY J L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology [J]. Mathematische Annalen, 1993, 296(1): 139-158.
  • 4LODAY J L. Kunneth-style formula for the homology of Leibni~ algebras [J]. Mathematics Zeitschrift, 1996, 221(1): 41-47.
  • 5PIRASHVILI T. On Leibniz homology [J]. Annales De L'Institut Fourier, 1994, 44(2): 401-411.
  • 6AYUPOV A SH, OMIROV B A. On Leibniz algebra [C]. Algebra and Operator Theory Proceeding of the Collo- quium in Tashkent, 1997: 1-12.
  • 7AYUPOV ASH, OMIROV B A. On some classes of nilpotent Leibniz algebra [J]. Siberian Mathematical, 2001, 42(1): 15-24.
  • 8ALBEVERIO S, AYUPOV A SH, OMIROV B A. On nilpotent and simple Leibniz algebra [J]. Communications in Algebra, 2005, 33(1): 159-172.
  • 9KURDIANI R, PIRASHVILI T. A Leibniz Algebra Structure on the Second Tensor Power[J]. Journal of Lie Theory, 2002: 583-596.
  • 10Dong LIU,Lei LIN.On the Toroidal Leibniz Algebras[J].Acta Mathematica Sinica,English Series,2008,24(2):227-240. 被引量:1

二级参考文献41

  • 1BLOCH A. On a generalizatlon of Lie algebra [J]. Math in USSR Doklady, 1965, 165(3): 471-473.
  • 2LODAY J L. Cyclic Homology [M]. Springer-Verlag, Berlin, 1992.
  • 3LODAY J L. Une version non commutative des algébres de Lie: les algébres de Leibniz [J]. Enseign. Math. (2), 1993, 39(3-4): 269-293. (in French)
  • 4LODAY J L, PIRASHVILI T. Universal enveloping algebras of Leibniz algebras and (co)homology [J]. Math. Ann., 1993, 296(1): 139-158.
  • 5LODAY J L. Kuneth-style formula for the homology of Lelbnlz algebras [J]. Math. Z., 1996, 221(1): 41-47.
  • 6PIRASHVILI T. On Leibniz homology [J]. Ann. Inst.Fourier (Grenoble), 1994, 44(2): 401-411.
  • 7AYUPOV SH A, OMIROV B A. On Leibniz Algebras [M]. Algebra and Operator Theory (Tashkent, 1997),1-12, Kluwer Acad. Publ., Dordrecht, 1998.
  • 8AYUPOV SH A, OMIROV B A. On some classes of nilpotent Leibniz algebras [J]. Sibirsk. Mat. Zh., 2001,42(1): 18-29. (in Russian)
  • 9ALBEVERIO S, AYUPOV SH A, OMIROV B A. On nilpotent and simple Leibniz algebras [J]. Comm. Algebra, 2005, 33(1): 159-172.
  • 10HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag, New York-Berlin, 1972.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部