期刊文献+

经验模态分解及其在降噪方面的应用 被引量:5

下载PDF
导出
摘要 详细介绍经验模态分解(EMD)方法,描述了EMD算法实现步骤;通过EMD分解,任何信号序列都可分解为一系列不同尺度的固有模态函数(IMF),这种分解方法是从信号本身的尺度特征出发对信号进行分解,具有良好的自适应性,非常适合对非线性非平稳信号进行分析,并列举实例证明了其有效性。同时,提出了一种基于EMD的小波阈值降噪方法,在很大程度上克服了直接小波阈值降噪的一些缺陷,仿真数据处理证明了该方法的有效性。
出处 《机械制造》 2011年第10期26-29,共4页 Machinery
  • 相关文献

参考文献5

二级参考文献23

  • 1王亚,吕新华,王海峰.一种改进的小波阈值降噪方法及Matlab实现[J].微计算机信息,2006(02X):259-261. 被引量:45
  • 2孙艳争,黄炜,余波.基于EMD的非线性信号自适应分析[J].电子科技大学学报,2007,36(1):24-26. 被引量:11
  • 3HUANG N E, SHEN Z, LONG S R et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and-stationary Time Series Analysis[J]. Proc R Soc Lond A, 1998,454( 1971 ) :903- 995.
  • 4BOUDRAA A O, CEXUS J C. EMD-based Signal Filtering [ J ]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (6) :2196-2202.
  • 5[1]N.E. Huang. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond, 1998,454 (A): 903 ~995.
  • 6[2]L. Colen. Time-frequency distributions :a review. IEEE.Proc. ,1989,77(7) :941~981.
  • 7[4]N.E.. Huang,S.. R.. Long, Z. Shen. A new view of nonlinear water waves:The Hilbert spectrum. Annu.Rev. Fluid, 1999,31:417~457.
  • 8[5]N.E. Huang,S. R.. Long. Wave fusion as a mechanism for nonlinear evolution of water waves,J. Fluid. Mech. ,1995,27:254~280.
  • 9高云超,桑恩方,刘百峰.基于经验模式分解的自适应去噪算法[J].计算机工程与应用,2007,43(26):59-61. 被引量:20
  • 10DONOHO D L.Adapting to unknown smoothness via waveletshrinkage[J].J Amer Statist Assoc,1995,81(2):1200-1224.

共引文献109

同被引文献45

  • 1高天,陈怀玉,曹丽.一种基于超声缺陷回波分析的小波降噪方法[J].仪器仪表学报,2015,36(S01):73-79. 被引量:4
  • 2王朝晖,姚德群,段礼祥.基于模糊聚类的油田往复压缩机气阀故障诊断研究[J].机械强度,2007,29(3):521-524. 被引量:22
  • 3N. E. Huang et al., "The empirical mode decomposition and the Hil- bert spectrum for nonlinear and non-stationary time series analysis," Proc.Roy. Soc. London A, vol. 454, pp. 903-995, Mar. 1998.
  • 4P. Flandrin, G. Rilling, and P. Goncalves, "Empirical mode decomposi- tion as a filter bank," IEEE Signal Process. Lea., vol. 11, pp. 112-114, Feb. 2004.
  • 5Y. Kopsinis and S. McLauglin, "Improved EMDusing doubly-iterative sifting and high order spline interpolation," EURASIP J. Adv. Signal Process., vol. 2008, 2008.
  • 6Y. Zhang, Y. Gao, L. Wang, J. Chen, and X. Shl, "'The removal orwall components in Doppler ultrasound signals by using the empirical mode decomposition algorithm," IEEE Trans. Biomed. Eng., vol. 9, pp. 1631-1642, Sep. 2007.
  • 7B. Ning, S. Qiyu, Y. Zhihua, H. Daren, and H. Jiwu, "Robust image watermarking based on multiband wavelets and empirical mode de- composition," IEEE Trans. Image Process., pp. 1956-1966, Aug. 2007.
  • 8L. Cohen, Time-Frequency Analysis. Englewood Cliffs, NJ: Pren- tice-Hall, 1995.
  • 9S. Theodoridis and K. Koutroumbas, Pattern Recognition, 3rd ed.New York: Academic, 2006.
  • 10L. Hadjileontiadis, "Empirical mode decomposition and fractal dimen- sion filter," IEEE Eng. Med. Biol. Mag., pp. 30-39, Jan. 2007.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部