期刊文献+

基于多重分形去趋势涨落的心室纤颤和心动过速分析 被引量:1

Detection of Ventricular Tachycardia and Fibrillation Based on Multifractal Detrended Fluctuation Analysis
下载PDF
导出
摘要 本文运用多重分形去趋势涨落的分析方法,研究心动过速、心室纤颤和正常心电信号的多重分形特征,用以有效区分上述三种信号。通过分析心动过速、心室纤颤和正常心电信号的赫斯特指数、Renyi指数和多重分形谱,得出三种信号都具有不同程度的长程相关性和多重分形特性,在波动函数的阶数大于0时,三种信号的长程相关特性区别明显。通过分析多重分形谱,发现心室纤颤的多重分形谱比心动过速的多重分形谱宽,正常心电信号的多重分形谱最小。以上研究结果将对临床医学诊断识别心动过速和心室纤颤号信号有很好的借鉴意义。 In this paper, muhifractal detrended fluctuation analysis method was used to analyze the multifractal characteristics of the ventricular fibrillation (VT) signals, the ventricular tachycardia ( VF ) signals and the normal electrocardiograph ( ECG ) signals, which was used to distinguish three kinds of signals effectively. By analyzing the Hurst index, Renyi index and multifractal spectrum, it was found that there were degrees of long-range correlation and multifractal characteristics among three kinds of signals, and when the order of fluctuation function was positive, the three kinds of signals showed distinct long-range correlation properties. To compare with the three signals" muhifractal spectrum, the width of the normal ECG signals' spectrum was smallest,the VT signals' was of the second stronger fractality and the VF signals' was of the biggest. This study provided good reference for clinical diagnosing and distinguishing with VT and VF.
作者 谢佳兴 王俊
出处 《北京生物医学工程》 2011年第5期490-495,共6页 Beijing Biomedical Engineering
关键词 心动过速 心室纤颤 多重分形 去趋势涨落分析 ventricular tachycardia ventricular fibrillation multifractal detrended fluctuation analysis
  • 相关文献

参考文献9

  • 1Zhang XS,Zhu YS,Tharkor NV,et al.Detecting ventricular tachycardia and fibrillation by complexity measure[J].IEEE Trans on Biom Eng,1999,46(5):548-555.
  • 2Chen SW.A two-stage discrimination of cardiac arrhythmias using a total least squares-based prony modeling algorithm[J].IEEE Trans on Biom Eng,2000,47(10):1317-1327.
  • 3Zhang HX,Zhu YS.Qualitative chaos analysis for ventricular tachycardia and fibrillation based on symbolic complexity[J].Medi Eng & Phy,2001,23(8):523-528.
  • 4Sherman LD,Callaway CW,Menegazzi JJ.Ventricular fibrillation exhibits dynamical properties and self-similarity[J].Resus,2000,47(2):163-173.
  • 5Peng CK,Havlin S,Stanley HE,et al.Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J].Chaos,1995,5(1):82-87.
  • 6Peng CK,Buldyrev SV,Havlin S,et al.Mosaic organization of DNA nucleotides[J].Phys Rev E,1994,49(2):1685-1689.
  • 7黄海,谢洪波,王志中,袁佳宁.基于DFA的心动过速与心室纤颤识别[J].北京生物医学工程,2006,25(1):39-42. 被引量:7
  • 8Kantelhardt JW,Zschiegner SA,Koscielny BE,et al.Multifractal detrended fluctuation analysis of nonstationary Time Series[J].Physica A,2002,316(1-4):87-114.
  • 9He LY,Chen SP.Are crude oil markets multifracatal? Evidence from MF-DFA and MF-SSA perspectives[J].Physica A,2010,389(16):3218-3229.

二级参考文献12

  • 1Thakor NV,Zhu YS and Pan KY.Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm.Biomedical Engineering,IEEE Transactions on,1990,37 (9):837-843
  • 2Zhang XS,Zhu YS,Thakor NV,et al.Detecting ventricular tachycardia and fibrillation by complexity measure.IEEE Transactions on Biomedical Engineering,1999,46 (5):548-555
  • 3ChenSW,A two-stage discrimination of cardiac arrhythmias using a total least squares-based prony modeling algorithm.IEEE Transactions on Biomedical Engineering,2000,47 (10):1317-1327
  • 4Small M,Yu D,Simonotto J,et al.Uncovering non-linear structure in human ECG recordings.Chaos,Solitons and Fractals,2002,13 (8):1755-1762
  • 5Zhang HX and Zhn YS.Qualitative chaos analysis for ventricular tachycardia and fibrillation based on symbolic complexity.Medical Engineering & Physics,2001,23 (8):523-528
  • 6Samie FH and Jalife J,Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart.Cardiovascular Research,2001,50 (2):242-250
  • 7Sherman LD,Callaway CW and Menegazzi JJ.Ventricular fibrillation exhibits dynamical properties and self-similarity.Resuscitation,2000,47 (2):163-173
  • 8Peng CK,Havlin S,Stanley HE,et al.Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series.Chaos,1995,5 (1):82-87
  • 9Peng CK,Buldyrev SV,Havlin S,et al.Mosaic organization of DNA nucleotides.Physical Review E,1994,49 (2):1685-1689
  • 10Blesic S,Milosevic S,Stratimirovic D,et al.Detecting long-range correlations in time series of neuronal discharges.Physica A,2003,330 (3-4):391-399

共引文献6

同被引文献14

  • 1Amann A,Tratnig R,Unterkofler K. Detecting Ventricular Fibrillation by Time-delay Methods[J].IEEE Transactions on Biomedical Engineering,2009,(02):174-177.
  • 2Arafat M A,Chowdhury A W,Hasan M K. A Simple Time Domain Algorithm for Detection of Ventricular Fibrillation in Electrocardiogram[J].Signal Image&Video Processing,2009,(03):221-228.
  • 3Fokkenrood S,Leijdekkers P,Gay V. Ventricular Tachycardia/Fibrillation Detection Algorithm for 24/7 Personal Wireless Heart Monitoring[A].IEEE Press,2010.110-120.
  • 4Wang Gang,Huang Hai,Xie Hongbo. Multifractal Analysis of Ventricular Fibrillation and Ventricular Tachycardia[J].Medical Engineering&Physics,2009,(02):375-379.
  • 5Abbas R,Aziz W,Arif M. Prediction of Ventricular Tach-yarrhythmia in ECG Using Neuro-wavelet Approach[J].Emerging Technologies,2012,(05):82-87.
  • 6Jekova I,Dushanova J,Popivanov D. Method for Ventricular Fibrillation in the External Electrocardiogram Using NonlinearPrediction,Institute of Physics Publishing[J].Physiological Measurement,2012,(02):337-345.
  • 7Sun Y,Chan K L,Krishnan S M. Life-threatening Ventricular Arrhythmia Recognition by Nonlinear Descriptor[J].BioMedical Engineering OnLine,2010,(02):503-511.
  • 8Arafat M A,Sieed J,Hasan M K. Detection of Ventricular Fibrillation Using Empirical Mode Decomposition and Bayes Decision Theory[J].Computers in Biology and Medicine,2009,(02):1051-1057.
  • 9Othman M A,Safri N M. Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm[J].Analytical Modelling and Computer Simulation,2010,(03):307-311.
  • 10Othman M A,Safri N M. Characterization of Ventricular Arrhythmias Using Semantic Mining Algorithm[J].Journal of Mechanics in Medicine and Biology,2012,(01):1-11.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部