期刊文献+

基于核主元分析的净化除钴过程数据预处理研究 被引量:1

KPCA-based Data Pre-processing for Cobalt Removal Purification Process
下载PDF
导出
摘要 在净化除钴过程中,复杂的现场生产使工艺参数具有高维性、强耦合性、非线性等特点,对除钴效果分析以及过程建模产生较大影响。针对该问题,本文通过对现场工艺参数的特性分析,提出了一种基于核主元分析(KPCA)的数据预处理方法,消除噪音并有效提取工业数据信息。采用工业生产数据对该方法进行对比仿真实验,结果表明,基于KPCA的数据预处理方法改善了模型的精度,对净化除钴优化控制具有重要意义。 Due to the complexity of the on-site production process, the raw data in Cobalt Removal of Zinc Purification process has characteristics of high dimension, strong coupling and non-linear,which affects the analysis of the cementation efficiency and modeling accuracy.Aimed to solve the above problems, a data pre-process method based on Kernel Principle Component Analysis (KPCA) is proposed after analyzing the characteristics of the raw data in the paper. The method could extract the useful information, eliminate the noise, and the nonlinearity The simulation based on the industrial process data shows that the method can improve the model accuracy and is significant for the optimization control of the cobalt removal process in zinc purification.
出处 《有色冶金设计与研究》 2011年第4期51-53,共3页 Nonferrous Metals Engineering & Research
基金 国家自然科学基金项目(60874069)
关键词 净化除钴 数据预处理 核主成分分析 cobalt removal purification data pre-process KPCA
  • 相关文献

参考文献7

  • 1Trina M.Dreher,et,al.The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu,Cd,Pb,Sb and Sn additives[J].Hydrometallurgy,2001(60) :105-116.
  • 2Jari Nasi.Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process [J].Hydromentalturgy,2004(73): 123-132.
  • 3Pinar burcu kayin, Removal of cobalt from Zinc sulfate solution by cementation prior to Zinc electrowinning.2003.
  • 4Gentsch JR,Words PA,Ramachandran M,et al.Review of G and P typing results from a global collection of rotavirus strains: implications for vaccine development.J Infect Dis,1996,174 (suppl 1):s30-s36.
  • 5B Scholkopf, A Smola, K R MUller. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation(S0899- 7667), 1998, 10(5): 1299-1319.
  • 6黄宴委,彭铁根.基于核主元分析的非线性动态故障诊断[J].系统仿真学报,2005,17(9):2291-2294. 被引量:19
  • 7钱淼华 林耿耿 赵丹丹等.基于MATLAB的BP神经网络生态用水量预测.河海大学学报:自然科学版,2010,:305-307.

二级参考文献7

  • 1Kano M, Hasebe S, Hashimoto I. A new multivariate statistical process monitoring method using principal component analysis[J]. Computers & chemical engineering, 2001,25:1103-1113.
  • 2Seongkyu Y, John F, MacGregor. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures[J]. Journal of process control, 2001,11:387-400.
  • 3Lee J M, Yoo C K, Choi S W, el at. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004,59:223-234.
  • 4Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1995,30:179-196.
  • 5Kourti T, MacGregor J F. Multivariate SPC methods for process and product monitoring[J]. J Qual Technol, 1996,28: 409-421.
  • 6Jackson J E. A user's to principle components[M]. New York: Wiley-Inter-Science, 1991.
  • 7Yan Weiwu Shao HuiheDepartment of Automation,Shanghai Jiaotong University,Shanghai 200030, China.NONLINEAR DATA RECONCILIATION METHOD BASED ON KERNEL PRINCIPAL COMPONENT ANALYSIS[J].Chinese Journal of Mechanical Engineering,2003,16(2):117-119. 被引量:6

共引文献19

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部