期刊文献+

基于支持向量机的低压故障电弧识别方法

Recognition of Low-Voltage Fault Arc based on Support Vector Machine
下载PDF
导出
摘要 故障电弧是引发电气火灾事故的主要原因之一。本文将支持向量机引入故障电弧研究领域,进行不同负荷情况下的故障电弧识别检测。首先参照美国UL1699标准进行实验采集电流数据,然后利用支持向量机实现故障电弧的训练、检测识别,并对训练、识别结果进行了分析,实验证明本文的检测方法具备一定的泛化能力。 Fault arc is one of the prime reasons causing electrical fire accidents. This paper has introduced support vector machine into fault arc research field and recognized fault arcs under different loads. Firstly, tests were made to collect data based on American Standard UL1699. And then training, detection and recognition of fault arcs are made by support vector machine. The analysis of the results has proved the test method is of certain ability of generalization.
出处 《有色冶金设计与研究》 2011年第4期58-61,共4页 Nonferrous Metals Engineering & Research
关键词 支持向量机 核函数 故障电弧 support vector machine kernel function fault arc
  • 相关文献

参考文献6

二级参考文献27

  • 1伯梅,高隽,王晓嘉,张旭东.基于SOM网络块分类的DCT-SVD数字水印算法[J].仪器仪表学报,2006,27(z1):914-916. 被引量:2
  • 2符平发.中外电气火灾十年数据分析及防控体系[J].电气技术,2008,9(3):8-11. 被引量:9
  • 3CRNKO T, DYRNES S. Arcing fault hazards and safety suggestions for design and maintenance[J].Industry Applications Magazine, IEEE,2001,7(3):23-32.
  • 4H. Bruce Land, III. The behavior of arcing faults in low-voltage switchboards[J]. IEEE Transactions On Industry Applications,2008,44(2):437-444.
  • 5WU H R, LI X H, STADE D, SCHAU H. Arc fault model for low-voltage AC systems[J]. IEEE Transactions On Power Delivery,2005,20(2): 1204-1205.
  • 6ARUNACHALAM S, DIONG B. A parametric model approach to arc fault detection for DC and AC power systems[C].Industry Applications Conference, 2006, 5: 2249-2255.
  • 7IDARRAGA OSPINA G, CUBILLOS D, IBANEZ L. Analysis of arcing fault models[C]. Transmission and Distribution Conference and Exposition,2008,8:1-5.
  • 8RESTREPO C E. Arc fault detection and discrimination methods[C]. Electrical contacts-2007, the 53rd ieee holm conference, 2007,9:115-122.
  • 9Underwriter Laboratories Inc. UL Standard for Safety for Arc-Fault Circuit-Interrupters UL 1699,Second Edition. April 7, 2006.
  • 10VERDU S V, GARCIA M O, SENABRE C, et al. Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps[J]. IEEE Transactions on Power Systems, 2006, 21 (4): 1672- 1682.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部