摘要
研究了一类具有转换条件且两个边界条件中带谱参数的正则Sturm-Liouville问题.应用常数变易法导出Sturm-Liouville初值问题的一对线性无关的基本解的表达式,然后将该问题的基本解的渐近分析,转化为考虑定义在适当的Hilbert空间H中的一个线性自伴算子A的基本解的渐近分析,并推导出该正则的Sturm-Liouville算子A的基本解的渐近式和整函数的渐近式.
To investigate a class of regular Sturm-Liouville problems with transmission conditions and spectral-parameter in two boundary conditions,we applied the constants method to derive the expressions of a pair of linear independent fundamental solutions of Sturm-Liouville initial-value problems.Then a self-adjoint linear operator A ws defined in a suitable Hilbert space H such that the analysis of such problem were transformed into those of operator A.The asymptotic formulas of fundamental solutions of the regular Sturm-Liouville operator and integral function were also given.
出处
《延边大学学报(自然科学版)》
CAS
2011年第3期194-200,共7页
Journal of Yanbian University(Natural Science Edition)
基金
广东省自然科学基金资助项目(5012285)
广东培正学院青年项目(11pzxmyb039)
关键词
谱参数
转换条件
正则
基本解
渐近式
spectral-parameter
transmission conditions
regular
fundamental solution
asymptotic formulae