期刊文献+

一类具(拟-)Baer性的特殊Morita Context环

A Class of Special Morita Context Ring with(Quasi-)Baerness
下载PDF
导出
摘要 通过反例得出R为Baer环时,斜群环R*G与固定环RG未必是Baer环的结论.进而探讨了斜群环和固定环构成(拟-)Baer环的条件.通过对Morita Context环分解,得到斜群环和固定环构成的Morita Context环作成(拟-)Baer环的条件. We provided a counterexample to prove when R is Baer ring,R*G and RG are not necessarily Baer ring.Accordingly,studied the conditions of skew group ring and fixed ring to be(quasi-)Baer ring.By decomposing Morita Context ring we observed conditions of Morita Context ring formed of skew group rings and fixed rings to be(quasi-)Baer ring.
出处 《延边大学学报(自然科学版)》 CAS 2011年第3期212-215,共4页 Journal of Yanbian University(Natural Science Edition)
基金 吉林省教育厅"十一五"科学技术研究资助项目(吉教科合字[2010]第272号)
关键词 BAER环 拟-Baer环 MORITA Context环 斜群环 固定环 单环 Baer ring quasi-Baer ring Morita Context ring skew group ring fixed ring simple ring
  • 相关文献

参考文献12

  • 1JIN Hailan. Principally Quasi-Baer Skew Group Ring and Fixed Ring[D]. Pusan: Pusan National University, 2003:1-19.
  • 2Birkenmeier G F, Kim J Y, Park J K. Principally Quasi -Baer Rings[J]. Comm Algebra, 2001,29(2) :1-22.
  • 3Lee T K, Zhou Y. Reduced Modules[C]// Alberto Facchini, Evan Houstou, Luigii Salce. Rings, Modules, Alge- bras and Abelian Groups(Lecture Notes in Pure and Appl. Math 236). New york: Marcel Dekker, 2004:365-377.
  • 4Ebrahim H. A Note on p. q. -Baer Modules[J]. New York J Math, 2008(14) :403-410.
  • 5Ara P, Mathieu M. Local Multipliers of C* -Algebras[M]. New York: Springer, Berlin Heidelberg, 2003:140-155.
  • 6Morita K. Duality for Modules and Its Application to the Theory of Rrings with Minimum Conditions[J]. Science Reports of the Tokyo Kyoiku Daigoku Sect A, 1958(6):83-142.
  • 7Montgomery S. Fixed Rings of Finite Automorphism Groups of Associative Rings[M]. New York: Springer Ver- lag, 1980:4-23.
  • 8Lam T Y. Lectures on Modules and Rings[M]. New York:Springer-Verlag, 1999:246-272.
  • 9王尧,任艳丽.具有一对零同态的Morita Context环(Ⅰ)[J].吉林大学学报(理学版),2006,44(3):318-324. 被引量:14
  • 10王尧,任艳丽.具有一对零态射的Morita Context环(Ⅱ)[J].Journal of Mathematical Research and Exposition,2007,27(4):687-692. 被引量:4

二级参考文献14

  • 1王尧,任艳丽.具有一对零同态的Morita Context环(Ⅰ)[J].吉林大学学报(理学版),2006,44(3):318-324. 被引量:14
  • 2CHEN Huan-yin. Morita contexts with many units [J]. Comm. Algebra, 2002, 30(3): 1499-1512.
  • 3HAGHANY A. Morita contexts and torsion thcorles[J]. Math. Japon., 1995, 42(1): 137-142.
  • 4HAGHANY A. Hopficity and co-Hopficity for Morita contexts [J]. Comm. Algebra, 1999, 27(1): 477-492.
  • 5MORITA K. Duality for modules and its application on the theory of rings with minimum conditions [J]. Science Reports of the Tokyo Kyoiku Daigoku Sect. A, 1958, 6: 83-142.
  • 6JACOBSON N. Structure of Rings [M]. American Mathematical Society, Providence, R.I. 1964.
  • 7YE Yuan-qing. Semiclean rings [J]. Comm. Algebra, 2003, 31(11): 5609-5625.
  • 8NICHOLSON W K. SANCHEZ C E. Rings with the dual of the isomorphism theorem [J]. J. Algebra, 2004, 271(1): 391406.
  • 9MONK G S. A characterization of exchange rings [J]. Proc. Amer. Math. Soc., 1972, 35: 349-353.
  • 10NICHOLSON W K. Lifting idempotents and exchange ring [J]. Trans. Amer. Math. Soc., 1977, 229: 269-278.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部