摘要
利用经典的Zeng分解方法,并结合Meyer-Knig和Zeller算子基函数的界,讨论了Meyer-Knig和Zeller-Bézier算子在0<α<1时对一般有界函数的逼近,拓展了文献[1-2]的研究结果.
By means of the decomposition technique of Zeng,together with the exact bound of Meyer-Knig and Zeller operator basis functions,we studied the rate of Meyer-Knig and Zeller-Bézier operators for bounded functions in the case 0α1.The results extend the references of [1] and [2].
出处
《延边大学学报(自然科学版)》
CAS
2011年第3期220-222,共3页
Journal of Yanbian University(Natural Science Edition)