期刊文献+

基于Volterra级数的RLS自适应算法的混沌时间序列预测 被引量:1

RLS Self-adaptive Prediction for Chaotic Time Series Based on Volterra Series
下载PDF
导出
摘要 根据混沌序列产生的确定性和非线性机制,基于Volterra级数和RLS算法,提出了一种少参数二阶非线性滤波算法用于混沌时间序列的自适应预测。仿真结果表明,这种非线性自适应滤波器能有效地预测一些超混沌序列,而且该滤波器的一步均方误差性能明显高于其他基于Volterra级数的NLMS算法,表明该算法具有良好的收敛性能。 According to the deterministic and nonlinear mechanism of the generation of chaotic sequences,an oligo-parameter second-order nonlinear filter algorithm based on Volterra series and the RLS algorithm is presented for adaptive prediction of chaotic time sequences.Simulation results show that this nonlinear adaptive filter can effectively predict some micro-chaotic sequence.Moreover,one-step mean-square error characteristic of the filter is apparently higher than the other NLMS algorithms based on Volterra series,which shows that the algorithm has good convergence performance.
作者 束慧 陈卫兵
出处 《南通职业大学学报》 2011年第3期84-88,共5页 Journal of Nantong Vocational University
关键词 混沌 实时预测 VOLTERRA级数 RLS自适应算法 chaotic real-time prediction Volterra series RLS self-adaptive algorithm
  • 相关文献

参考文献6

二级参考文献3

共引文献174

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部