期刊文献+

基于LASVM面部识别的验证研究

Verification Study on Facial Recognition Based on LASVM
下载PDF
导出
摘要 在LSVM算法的基础上提出了利用LASVM算法来进行人脸识别的方法。首先利用MEGM度量学习算法转换CAS—PEAL—R1人脸共享数据库的样本数据和测试数据的特征空间,然后采用LSVM算法程序训练测试转换后的人脸数据并进行分类识别,最高准确率可达到98%。实验表明:利用LASVM算法进行人脸识别,不但识别速度快而且识别效率也高,具有较高的可行性。 On the basis of LASVM algorithm, a method of using LASVM algorithm to distinguish human faces is proposed. MEGM measure learning algorithm is firstly applied by LASVM algorithm to transfer characteristic space of training sample data and testing data in CAS-PEAL-RI face sharing database, and then, LSVM algorithm program is used for training the tested and converted face data and further categorically recognizing these data, the highest accuracy rate can reach to 98%. The experiment indicates that the face recognition method by making use of LASVM algorithm is of high speed, high efficiency and higher feasibility.
出处 《自动化信息》 2011年第10期36-38,共3页 Automation Information
关键词 LSVM LASVM 度量学习算法 CAS—PEAL—R1 特征空间 LSVM LASVM Measure Learning Algorithm CAS-PEAL-R1 Feature Space
  • 相关文献

参考文献5

二级参考文献37

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2冯素玲.人脸识别常用方法研究[J].微计算机信息,2004,20(5):94-95. 被引量:25
  • 3Vladimir N Vapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey[J]. Proceedings of the IEEE, 1995, 83(5): 704~741.?A?A?A
  • 5Phillips P Johnathon, Moon H, Rizvi Syed A, et al. The FERET evaluation methodology for face-recognition algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104.
  • 6Phillips P J, Grother P J, Micheals R J, et al. Face recognition vendor test 2002: Evaluation Report[OL]. http://www.frvt.org, 2003.
  • 7Turk Matthew, Pentland Alex. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86.
  • 8Belhumeur Peter N, Hespanha Joao P, Kriegman David J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
  • 9Georghiades A, Kriegman D, Belhumeur P. From few to many: Generative models for recognition under variable pose and illumination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643~660.
  • 10Sim Terence, Baker Simon, Bsat Maan. The CMU pose, illumination and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615~1618.

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部