摘要
文章从描述超短光脉冲传输的高阶Ginzburg-Landau方程入手,采用分步傅里叶变换法,利用计算机数值模拟的方法,研究了四阶色散对四种新型孤子(平脉动孤子、爆发孤子、蠕变孤子及正常色散区域内的呼吸子解)传输特性的影响.研究结果表明:当脉冲宽度窄到飞秒量级时,即对应传输速率很高的情况下,四阶色散对脉冲的影响才明显,四阶色散导致脉冲形状发生了畸变,畸变特点不同于二、三阶色散.
To study the effects fourth-order dispersions on the four novel solitons transmisssion,Which are pulsating soliton,erapting soliton,creeping soliton and breathing soiton.These solitons are numerical solutions for the quintic complex Ginzburg-Landau equation. The numerical results show that the effects of fourth-order dispersions on the four novel solitons transmission is distinct when the pulse width is shorter.Fourth-order dispersions lead to distortion of pulse shape,and be different from that of second order or third-order.
出处
《太原师范学院学报(自然科学版)》
2011年第3期86-89,共4页
Journal of Taiyuan Normal University:Natural Science Edition
关键词
飞秒光孤子
四阶色散
高阶非线性
数值分析
femtosecond optical solitions
four-order dispersion
high-order nonlinear
numerical solutions