期刊文献+

基于信息论的图像特征选择 被引量:1

Image Feature Selection Based on Information Theory
下载PDF
导出
摘要 图像特征选择是基于内容的图像检索的关键技术之一,ReliefF算法是常用的图像特征选择算法。针对ReliefF特征选择算法的不足,利用信息论中的散度对其进行改进,在相同的时间复杂度下,使得结果的有效性得到一定的改善。提出两步法的特征选择框架,并且实现去除冗余特征的算法,在保证结果有效性的前提下大大降低了时间复杂度。 Image feature selection is one of the key technologies for content-based image retrieval.And ReliefF method is a commonly-used way of image feature selection.The author tried to improve the shortcomings of the ReliefF method by means of Kullback divergence in information theory.As a result,this improvement makes the results of feature selection more efficient in the same time complexity.A new feature selection framework has been proposed which can be achieved in two steps.Using this framework can remove the redundant features effectively and obviously reduce the time complexity on the premise of ensuring the validity of the results.
作者 童舜海
机构地区 丽水学院工学院
出处 《丽水学院学报》 2011年第5期34-41,共8页 Journal of Lishui University
关键词 图像检索 特征选择 信息论 image retrieval feature selecting information theory
  • 相关文献

参考文献8

  • 1韦娜,王涛.结合ReliefF与支持向量机的特征选择方法研究[J].计算机应用与软件,2008,25(1):283-285. 被引量:6
  • 2Kohavi,Frasea B. Useful feature subsets and rough set reduces [M]. The Third International Workshop on rough sets and soft computing, 1994:310-317.
  • 3Weston J, Mukherjee S. Feature selection for SVMs[J]. In advances in neural information processing systems, 2000( 13 ):668-674.
  • 4Lee H M,Chen C M. An efficient fuzzy classifier with feature selection based on fuzzy entropy[J].IEEE transactions on systems and cybernetics part B: cybernetics, 2001,31 (3) : 426-432.
  • 5Koner D,Sahami M.Toword optimal feature selection [J]. In Proceedings of the thirteenth international conference on machine learning. San Fransisco: Morgan Kaufinann, 1996(2) : 132-136.
  • 6Davies S,Russl S. Np-completeness of searches fro smallest possible feature sets proceedings of the AAAI Fall 94 symposium on relevance[ M ]. Menlo Park, CA: AAAI press, 1994: 37-39.
  • 7Kira K, RendeU L The feature selection problem: traditional methods and a new algorithm [ M ]. Proceedings of the ninth national conference on artificial intelligence, 1992:129-134.
  • 8Kononenko I. Estimation attributes: analysis and extensions of Relief [M]. Proceedings of the 1994 European conference on machines learning, 1994:171-182.

二级参考文献6

  • 1Xing E,Jordan M,Karp R.Feature selection for high-dimensional genomic microaarray data[A].Intl.conf.on Machine Learning[C],2001:601-608.
  • 2Lee W,Stolfo S J,Mok K W.Adaptive Intrusion Detection:A Data Mining Approach.AI Rev.,2000,14(6):533 -567.
  • 3Robnik-(S)ikonja M,Ifor Kononenko.Theoretical and Empirical Analysis of ReliefF and RReliefF[J].Machine Learning Journal.2003,53:23-69.
  • 4Ran Gilad-Bachrach,Amir Navot,Naftali Tishby.Margin based feature selection-theory and algorithms[A].Proceedings of the twentyfirst international conference on Machine learning[C].2004,69.
  • 5Kononenko I.Estimation attributes:analysis and extensions of RELIEF[A].Proceedings of the 1994 European Conference on Machine Learning[C],1994:171-182.
  • 6Marko R S,Kononenko I.Comprehensible interpretation of relief estimates[A].In:Brodley C E,Danyluk A P,Eds.Proceedings of the 18th International Conference on Machine Learning[C].San Fransisco:Morgan Kaufmann,2001:443-440.

共引文献5

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部