期刊文献+

住宅辐射-送风末端冷负荷分担率研究——从热舒适及室内空气品质角度 被引量:5

Sharing Rate of Cooling Load of Radiant Terminal Device and Air Supply Terminal Device in Residential Buildings——From the Perspective of Thermal Comfort and Indoor Air Quality
下载PDF
导出
摘要 以住宅建筑为研究对象,针对低、中、高负荷3种不同住宅负荷工况,对不同冷负荷条件下不同负荷分担率下的室内热环境进行了数值模拟,分别分析比较不同冷负荷分担率匹配时室内热舒适性水平及室内空气品质情况,从舒适和健康的角度,分析适宜的冷负荷分担率范围。研究结果表明辐射供冷末端承担的显热负荷分担率ωc<0.7时,可将工作区人体热舒适性指标控制在舒适性标准允许范围内。从避免局部不舒适度方面讲,ωc宜取0.4~1。从室内空气品质角度讲,定风量模式低中负荷工况,ωc宜取0.5~0.9,高负荷工况,ωc宜取0.35~0.6;变风量模式,ωc值越小,室内空气品质越好。 Taking residential buildings as the study objects, for three different residential load types such as low load, medium load, and high load type, indoor thermal environments of different load sharing-rates are simulated, respectively. Indoor thermal comfort and indoor air quality of different load sharing-rates are also analyzed and evaluated. And the appropriate range of cooling load sharing-rates are given from the view of both occupants' thermal comfort and occupants' health. When ωo(the sensible heat load sharing rate of the radiant terminal device) d0.7, the human thermal index in work region can be controlled within the range of thermal comfort standard. From the point of avoiding local discomfort, ωc is suggested to take 0.4 --1. As regard to indoor air quality, for the constant air volume mode, ωc is suggested to take 0.5-0.9 under low and middle load conditions, and ωc is suggested to take 0.35--0.6 under high load conditions. For the variable air volume mode, the smaller the value of ωc is, the better indoor air quality is.
作者 隋学敏 张旭
出处 《土木建筑与环境工程》 CSCD 北大核心 2011年第5期114-120,共7页 Journal of Civil,Architectural & Environment Engineering
基金 "十一.五"国家科技支撑计划重大项目(2006BAJ01A05 2006BAJ01B05) 中央高校基本科研业务费专项资金(CHD2010JC025) 长安大学基础研究支持计划专项资金 干旱 半干旱地区水资源与国土环境实验室开放基金
关键词 辐射供冷 送风 冷负荷分担率 热舒适 空气品质 radiant cooling air supply sharing rate of cooling load thermal comfort air quality
  • 相关文献

参考文献16

  • 1MEMON R A, CHIRARATTANANON S, VANGTOOK P. Thermal comfort assessment and application of radiant cooling: A case study [J].Building and Environment, 2008, 43(7).. 1185-1196.
  • 2CATALINA T, VIRGONE J, KUZNID F. Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling[J]. Building and Environment, 2009, 44 (8) : 1740-1750.
  • 3TIAN Z, LOVE J A. A field study of occupant thermal comfort and thermal environments with radiant slab cooling[J].Building and Environment, 2008, 43(10) : 1658-1670.
  • 4VANGTOOK P, CHIRARATTANANON S. Application of radiant cooling as a passive cooling option in hot humid climate[J].Building and Environment, 2007, 42(2): 543- 556.
  • 5CORGNATI S P, PERINOP M, FRACATOROF G V. Experimental and numerical analysis of air and radiant cooling systems in offices[J].Building and Environment, 2009, 44(4):801-806.
  • 6JEONG J W, MUMMA S A. Practical cooling capacity estimation model for a suspended metal ceiling radiant cooling panel[J].Building and Environment, 2007, 42 (9): 3176-3185.
  • 7TIANT Z, LOVE J A. Energy performance optimization of radiant slab cooling using building simulation and field measurements[J]. Energy and Buildings, 2009, 41(3) ; 320- 30.
  • 8WANG S, MORIMOTOM M, SOEDA H. Evaluating the low exergy of chilled water in a radiant cooling system[J]. Energy and Buildings, 2008, 40(10) : 1856-1865.
  • 9殷平.独立新风系统(DOAS)研究(2):设计方法[J].暖通空调,2004,34(2):37-43. 被引量:29
  • 10LIU W, LIAN Z W. Energy consumption analysis on a dedicated outdoor air system with rotary desiccant wheel [J].Energy and Buildings, 2007, 32 (9): 1749-1760.

二级参考文献32

  • 1罗志文,赵加宁.改进的通风性能评价指标——实际新风换气次数[J].哈尔滨工业大学学报,2007,39(6):912-915. 被引量:11
  • 2麦奎斯顿.采暖通风和空气调节(分析和设计)[M].北京:中国建筑工业出版社,1982.
  • 3ASHRAE. ASHRAE Handbook & product direction [M] . Atlanta.. ASHRAE, 1997.
  • 4克鲁姆 D J.建筑物空气调节与通风[M].北京:中国建筑工业出版社,1982.
  • 5井上宇市.空氮调和[M].日本:丸善株式会社,1982.
  • 6ASHRAE. ASHRAE Standard 62-1999 Ventilation for acceptable indoor air quality [S]. Atlanta.. ASHRAE, 1999.
  • 7Steven Taylor. Determining ventilation rates :revisions to Standard 62-1989 [J]. ASHRAE lournal, 1996(2):22-28.
  • 8ASHRAE. ASHRAE Standard 62-1989R Ventilation for acceptable indoor air quality[S], 1989.
  • 9ASHRAE. ASHRAE Standard 62-2007 Ventilation for acceptable indoor air quality[S],2007.
  • 10中华人民共和国卫生部.GB/T 18883-2002 室内空气质量标准[S].北京:中国标准出版社,2002.

共引文献42

同被引文献39

  • 1李治民,杨运良,魏平儒,袁东升.置换通风下污染源对室内空气品质的影响[J].河南理工大学学报(自然科学版),2006,25(5):355-358. 被引量:1
  • 2陆耀庆.实用供热空调设计手册[M].2版.北京:中国建筑工业出版社,2007.
  • 3Jeong J W, Mumma S A, Bahnfleth W P. Energy conservation benefits of a dedicated outdoor air system with parallel sensible cooling by ceiling radiant panels [J]. ASHRAE Transaction, 2003,109 (2) : 627-636.
  • 4Catalina T, Virgone J, Kuznik F. Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling [J]. Building and Environment, 2009,44 : 1740-1750.
  • 5Vangtook P, Chirarattananon S. An experimental investigation of application of radiant cooling in hot humid climate[J]. Energy and Building, 2006,38 : 273- 285.
  • 6Lim J H, Jo J H, Kim Y K, et al. Application of the control methods for radiant floor cooling system in residential buildings [J]. Building and Environment, 2006,41:60-73.
  • 7Mumma S A, Jeong J W. Direct digital temperature, humidity, and condensate control for a dedicated outdoor air-ceiling radiant cooling panel system [J]. ASHRAE Transaction,2005,111(part 1) :547-558.
  • 8Xuan Y M, Huang X, Kang N, et al. Experimental study of a hybrid radiant cooling air conditioning system based on evaporative cooling used in Xi'an city, China [C]//The 7th International Symposium on Heating,Ventilation and Air Conditioning. Shanghai: Tongji University: 27-32.
  • 9闰振华.基于蒸发冷却辐射供冷/热空调系统实验研究[D].西安:西安工程大学,2008.
  • 10Novoselac A, Srebric J. A critical review on the performance and design of combined cooled ceiling and displacement ventilation systems [J]. Energy and Buildings, 2002, 34: 497-509.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部