期刊文献+

风力机防冰热载荷计算 被引量:10

Calculation of Wind Turbine Anti-icing Heat Load
下载PDF
导出
摘要 采用一种新的基于压力和剪切力的溢流水流量计算方法进行部件表面防冰热载荷数值模拟。求解雷诺平均N-S方程,嵌入k-ωSST湍流模型获得空气流场;欧拉法求解水滴质量和动量守恒方程,获得部件周围水滴速度分布和表面水滴撞击特性;基于传统的Messinger控制容积思想,分析控制体的各项热流,建立质量守恒和能量守恒方程,引入溢流水质量流量计算方程,封闭控制方程,求解方程组获得表面所需的防冰热载荷。采用本文提出的新的流量计算方法获得了NACA0012翼型表面的结冰冰形,并与试验数据进行对比,说明了流量计算方法的正确性。计算分析了不同条件下表面的防冰热载荷分布,结果表明,工作风速和液态水含量的变化既影响了防冰热载荷大小,也影响了溢流范围,而工作温度仅影响防冰热载荷,水滴平均容积直径仅影响溢流范围。 A new method of runback water mass calculation based on both pressure and shear stress is used to simulate the anti-icing heat load.The Reynolds-averaged Navier-Stokes equations are solved to obtain the flow field around the airfoil with k-ω SST turbulence models.The droplet trajectories are acquired using the Eulerian method,based on which the local collection efficiency can be obtained.Adoping the traditional Messinger model,various heat fluxes of the control volume are analyzed,and the runback water mass calculation equation is induced to solve the mass and energy conservation equations.The ice shape on the NACA0012 profile is computed using the current runback water mass calculation method, and the results coincide with the experiment data under the same conditions.It shows that the new method illustrated in this paper is satisfactory.The heat loads in different conditions show that the changes in wind velocity and liquid water content affect both heat load and overflow area,whereas the temperature only affects the anti-icing heat load and the medium volume of water droplets only affects overflow area.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第5期701-706,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家重点基础研究发展计划("九七三"计划)(2007CB714600)资助项目 国家自然科学基金(10972106)资助项目 江苏高校优势学科建设工程资助项目
关键词 防冰热载荷 溢流水流量计算 压力 剪切力 Messinger模型 anti-icing heat load runback water mass calculation pressure shear stress Messinger model
  • 相关文献

参考文献12

  • 1Fortin G, Perron J. Wind turbine icing and de-icing [R]. AIAA 2009-274, 2009.
  • 2Matthew C H, Muhammad S V, Tomas W, et al. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades[J]. Wind Energy, 2010,98 ( 12 ) : 724-729.
  • 3Duncan T, LeBlanc M, Morgan C, et al. Understanding icing losses and risk of ice throw at operating wind farms[J]. Winterwind, 2008,45(1):35-41.
  • 4Laakso T, Holttinen H, Tonsten G, et al. State-of- the-art of wind energy in cold climates[M]. [S. l. ]: VTT Technical Research Centre of Einland, 2010.
  • 5裘燮纲,韩凤华.飞机防冰系统[M].北京:航空专业教材编审组,1985.
  • 6Chung J, Choo Y, Reehorst A, et al. Navier-Stokes analysis of flowfield characteristics of an ice-contaminated aircraft wingp[R]. AIAA 1999-0375,1999.
  • 7Shim J, Chung J, Lee K D. A comparison of turbulence modeling in flow analysis of iced airfoits[R]. AIAA 2000-3920, 2000.
  • 8Wirogo S, Srirambhatla S. An Eulerian method to calculate the collection efficiency on two and three dimensional bodies[R]. AIAA 2003-1073, 2003.
  • 9Gary A R, Brian M B. Users manual for the NASA LEWICE ice accretion prediction code (LEWICE) [R]. NASA CR-185129, 1990.
  • 10Tim G M. Extension to the messinger model for aircraft icing[J]. AIAA Journal, 2001,39(2) : 211-218.

共引文献16

同被引文献108

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部