期刊文献+

低维Tortken超代数的分类与Tortken超代数的一些性质 被引量:2

Some Properties of Tortken Superalgebras and Classification of Low Dimensional Tortken Superalgebras
下载PDF
导出
摘要 该文给出了Tortken超代数的概念,详细讨论了在A_1≠{0}时实数域上二维Tortken超代数的分类,当A_1={0}时,给出了二维超代数成为Tortken超代数的一个充要条件.最后讨论了Tortken超代数的一些性质,得到了Tortken超代数上的一个四次的等式. In this paper the authors give the definition of Tortken superalgebra first, then they classfy the 2-dimensional Tortken superMgebra while A1 ≠ {0}; they give an equivalence for a 2-dimensional superalgebra to be tortken while A1 = {0}; they also discuss some properties on Tortken superalgebras and get an identity with degree 4 on Tortken suDeralgebra.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第5期1190-1208,共19页 Acta Mathematica Scientia
基金 国家自然科学基金(10871057) 中央高校基本科研业务费专项资金资助
关键词 Tortken超代数 Novikov超代数 LEIBNIZ dual超代数. Tortken superalgebra Novikov superalgebra Leibniz dual superalgebra.
  • 相关文献

参考文献1

二级参考文献18

  • 1Scheunert M. Generalized Lie algebras. J Math Phys, 1979, 20:712-720.
  • 2Scheunert M, Zhang R. Cohomology of Lie superalgebras and their generalizations. J Math Phys, 1998, 89:5024-5061.
  • 3Scheunert M. Theory of Lie superalgebras. Berlin, Heidelbeg, New York: Springer, 1979. 270.
  • 4Wilson M. Delta methods in enveloping algebras of Lie colour algebras. J Algebra, 1995, 175:661-696.
  • 5Price K. Primeness criteria for universal enveloping algebras of Lie color algebras. J Algebra, 2001, 235: 589-607.
  • 6Passman D. Simple Lie color algebras of Witt type. J Algebra, 1998, 208:698-721.
  • 7Su Y, Zhao K, Zhu L. Simple Lie color algebras of Weyl type. Israel J Math, 2003, 137:109-123.
  • 8Feldvoss J. Representations of Lie colour algebras. Adv Math, 2001, 157:95-137.
  • 9Farnsteiner R. Central extensions and invariant forms of greaded Lie algebras. Algebras, Groups and Geometries, 1986, 3:431-455.
  • 10Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebras. J Algebra, 1988, 118:33-45.

共引文献4

同被引文献19

  • 1Jacobson N. Lie Algebras [M]. New York: Interscience-Wiley, 1962.
  • 2Osborn J. Novikov Algebras [J]. Nova J Algebra Geom, 1992(1) : 1-14.
  • 3BAI Cheng ming, MENG Dao-ji. The Classification of Novikov Algebras in l.ow Dimensions [J]. J Phys A; Math Gen, 2001, 34(8): 1581-1594.
  • 4KANG Yi-fang, CHEN Zhi-qi. Novikov Superalgebras in Low Dimensions [J]. J Nonlinear Math Phys, 2009, 16:251-257.
  • 5ZHUFu-hai, CHEN Zhi-qi. NovikovSuperalgebras withA0=A1A1 [J]. Cze Math J, 2010, 60(4): 903-907.
  • 6Gel'land I M, Dorfman Y I. Hamiltonian Operators and Algebraic Structures Related to Them [J]. Funkts Anal Its Prilozhen, 1979, 13(4): 248-262.
  • 7XU Xiao-ping. Quadratie Conformal Superalgebras [J]. J Algebra, 2000, 231(1): 1-38.
  • 8BAI Cheng-ming, MENG Dao ji. The Automorphisms of Novikov Algebras in Low Dimensions [J]. J Phys A: Math Gen, 2003, 36(28): 7715-7731.
  • 9SU Yucai , ZHAO Kaiming , ZHU Linsheng. Simple Lie Color Algebras of Weyl Type[J]. IsraelJ Math. 2003. 137(1): 109-123.
  • 10Feldvoss 1. Representations of Lie Colour Algebras[J]. Adv Math. 2001. 157C2): 95-137.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部