期刊文献+

Ore扩张环的弱相伴素理想

Weak Associated Primes over Ore Extension Rings
下载PDF
导出
摘要 作为对零化子与相伴素理想概念的推广,该文引进了弱零化子与弱相伴素理想的定义,并探讨了环R的弱相伴素理想与它的Ore扩张环R[x;α,δ]的弱相伴素理想之间的关系.证明了如果环R是(α,δ)-相容的可逆环,那么NAss(R[x;α,δ])={P[x;α,δ]| P∈NAss(R)},其中NAss(R[x;α,δ])与NAss(R)分别是环R[xα,δ]与环R的所有弱相伴素理想集合.这样Ore扩张环R[x;α,δ]的弱相伴素理想就直接可以用环R的弱相伴素理想来刻画.从而将文献[3,5 6]中的相关结论推广到更一般的情形. As a generalization of annihilator and associated primes, in this paper, the author introduces the notions of weak annihilator and weak associated primes, and investigates the relationship between the weak associated primes of a ring R and those of the Ore extension ring R[x; α,δ]. It is proved that if R is an (α,δ)-compatible reversible ring, then NAss(R[x; α,δ]) = {P[x;α,δ I P e NAss(R)}, where NAss(R[x; α,δ]) and NAss(R) stand for the set of all weak associated primes over R[x; α,δ] and that over R, respectively. So all associ- ated primes over R[x; α,δ] can be described in terms of the weak associated primes over R in a very straightforward way. Consequently, several results in [3], [5], [6] are generalized to a more general setting.
作者 欧阳伦群
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第5期1209-1219,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10771058 11071062) 湖南省自然科学基金(10jj3065) 湖南省教育厅重点项目(10A033)资助
关键词 弱零化子 弱相伴素理想 δ)-相容环. Weak annihilator Weak associated primes (α,δ)-compatible ring.
  • 相关文献

参考文献11

  • 1Nielsen P P. Semicommutativity and the McCoy condition. J Algebra, 2006, 298:134-141.
  • 2Hashemi E, Moussavi A. Polynomial extensions of quasi-Baer rings. Acta Math Hungar, 2000, 151: 215-226.
  • 3Brewer J, Heinzer W. Associated primes of principal ideals. Duke Math J, 1974, 41:1-7.
  • 4Shock R C. Polynomial rings over finite dimensional rings. Pacific J Math, 1972, 42:251-257.
  • 5Faith C. Associated primes in commutative polynomial rings. Comm Algebra, 2000, 28(8): 3983 -3986.
  • 6Annin S. Associated primes over skew polynomial rings. Comm Algebra, 2002, 30(5): 2511-2528.
  • 7Lam T Yet al. Primeness, semiprimeness, and prime radical of ore extensions. Comm Algebra, 1997, 25(18): 2459- 2506.
  • 8Liu Z, Zhao R. On weak Armendariz rings. Comm Algebra, 2006, 34:2607- 2616.
  • 9Annin S. Associated primes over Ore extension rings. Journal of Algebra and its Applications, 2004, 3(2): 193- 205.
  • 10陈焕艮.关于置换环上强可分性的注记[J].数学物理学报(A辑),2009,29(2):378-382. 被引量:1

二级参考文献16

  • 1CHENHUANYIN.SELF-CANCELLATION OF MODULES HAVING THE FINITE EXCHANGE PROPERTY[J].Chinese Annals of Mathematics,Series B,2005,26(1):111-118. 被引量:2
  • 2Szász F A.Radicals of Rings.Hoboken,New Jersey:John Wiley and Sons,1981
  • 3Feng Lianggui,Chen Huanyin.Subprojective modules and subinjective modules.J of Nanjing University,1995,31(1):9-14
  • 4Feng Lianggui.The injective radical of modules.J of Jiangxi Normal University,1994,18(2):147-151
  • 5Kasch F.Partiell Invertierbare Homomorphismen und das Total.Algebra Berichte 60.München:Verlag Reinhard Fischer,1988
  • 6Kasch F.Exchange Properties and the Total,Advances in Ring Theory.Boston:Birkhaüser,1997.163-174
  • 7Kasch F,Schneider W.The Total of Modules and Rings.Algebra Berichte 69.München:Verlag Reinhard Fischer,1992
  • 8Müller B J.On semiperfect rings,Ⅲ.J Math,1974,14:464-467
  • 9Cartan H,Eilenberg S.Homological Algebra.Princeton,New Jersey:Princeton Univ Press,1956
  • 10Lam T Y.Lectures on Modules and Rings.Graduate Texts in Math.Berlin-Heidelberg-New York:Springer-Verlag,1999

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部