期刊文献+

HERMITE型非正规样本定理及其混淆误差估计 被引量:1

Irregular Sampling Theorem of Hermite Type and Estimate of Aliasing Error
下载PDF
导出
摘要 该文证明了具有扰动的二重样本序列的指数型整函数的Marcinkiewicz-Zygmund型不等式.并由此结果得到非正规样本定理及其在Soblev类上的混淆误差估计. In this paper, the authors prove a Marcinkiewicz-Zygmund type inequality for entire functions of exponential type with multiple sampling sequences f(λn) and f′(λn). And from this result, the authors establish an irregular Whittaker-Kotelnikov-Shannon type sampling theorem and determine the bound of its aliasing error on the Sobolev classes.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第5期1220-1229,共10页 Acta Mathematica Scientia
基金 四川省科技厅重点项目基金(05JY029-138) 西华大学重点学科-应用数学(XZD0910-09-1)和西华大学校青年基金(Q0822601)资助
关键词 Marcinkiewicz-Zygmund型不等式 非正规样本定理 指数型整函数 混淆误差 Marinkiewicz-Zygmund type inequality Irregular sampling theorem Entire func-tion of exponential type Aliasing error.
  • 相关文献

参考文献15

  • 1Butzer P L. A survey of the Whittaker Shannon sampling theorem and some of its extensions. J Math Res Exposition, 1983:185-212.
  • 2Shanon C E. A mathematical theory of communication. Bell System Tech J, 1948, 27:379.
  • 3Boas R P, Jr. Entire Functions. New York: Academic Press, 1954.
  • 4Fang G S. Whitaker Kotelnikov Shannon sampling theorem and alaising error. J Approx Theorey, 1996, 85:115-131.
  • 5Paley R, Wiener N. Fourier Transform in Complex Domain. Colloq Publ Vol 19. Providence: AMS, 1934.
  • 6Kadec M I. The exact value of the Paley-Wiener constant. Soviet Math Dokl, 1964, 5:559-561.
  • 7Sun W C, Zhou X W. On the stability of multivariate trigonometric systems. J Math Anal Appl, 1999, 235:159-167.
  • 8Splettstoser W. Error estimates for sampling approximation of non-bandlimited functions. Math Appl Sic, 1979, 1:127.
  • 9Wang J J, Fang G S. Marcinkiewicz-Zygmard type inequality with non-equidistant spaced sampling points and irregular sampling approximation of non-bandlimited functions. J Beijing Normal University (Natural Science), 1999, 35(2): 157.
  • 10Chen G G, Fang G S. Discrete characterization on the Paley-Wiener space with several variables. Acta Mathematicae Applicatae Sincia, 2000, 26(4): 396-403.

同被引文献3

  • 1陈广贵 塔实甫拉提.非正规样本定理的一致混淆误差.北京师范大学学报:自然科学版,1998,34:32-38.
  • 2Nikoslkii S M.Approximation of Function of Several Variablesand Embedding Theorem,Berlin Heidelbery[M].New York:Springer-Verlag,1975:136,190-193.
  • 3Shanon C E.A Mathematical Theory of Communication[J].Bell System Tech J,1984,27:379.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部