期刊文献+

平面弹性力学问题基于泡函数的简化的稳定化二阶混合有限元格式

A Simplified and Stabilized Second Order Mixed Finite Element Formulation Based on Bubble Functions for Plane Elasticity Problems
下载PDF
导出
摘要 该文研究平面弹性力学问题基于泡函数的稳定化二阶混合有限元格式,通过消去泡函数导出一种自由度很少的简化的稳定化二阶混合有限元格式,误差分析表明消去泡函数的简化格式与带有泡函数的格式具有相同的精度而可以节省18N_p个自由度(其中N_p是三角形剖分中的顶点数目). In this paper, a stabilized second order mixed finite element formulation based on bubble functions for plane elasticity problems is studied, and a simplified second order mixed finite element formulation with less freedom degrees is obtained by eliminating all bubble functions. It is shown by analyzing error that the convergence of the simplified and stabilized second order mixed finite element formulation that of the stabilized second order mixed finite it can save 18Np freedom degrees (where Np is eliminated all bubble functions is the same as element formulation with bubble functions, but the number of vertices of triangularization).
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第5期1253-1265,共13页 Acta Mathematica Scientia
基金 国家自然科学基金(10871022 11061009) 河北省自然科学基金(A2010001663)资助
关键词 平面弹性力学问题 混合有限元格式 简化的稳定化格式 误差估计. Plane elasticity problem Mixed finite element formulation Simplified and stabilized formulation Error estimate.
  • 相关文献

参考文献9

  • 1Fraejies de Veubeke B. Displacement and Equilibrium Models the Finite Element Method, Stress Analy- sis//Zienkiewicz O C, Holister G S, eds. New York: Wiley, 1965:145-197.
  • 2Johnson C, Mercier B. Some Equilibrium finite element methods for two-dimensional problems. Numer Math, 1978, 30:103-116.
  • 3Pikaranta J, Stenberg R. Analysis of some mixed finite element methods for plane elasticity equations. Math Comp, 1983, 41(164): 399-423.
  • 4Raviart P A, Thomas J M. A Mixed Finite Element Method for 2nd-order Elliptic Problems. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1977:292-315.
  • 5Arnold D N, Douglas Jr J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45:1-22.
  • 6罗振东,刘儒勋.弹性力学问题的混合有限元分析[J].中国科学技术大学学报,1996,26(3):348-352. 被引量:2
  • 7罗振东.平面弹性力学问题的混合元法的泡函数稳定性及其后验误差估计[J].数学物理学报(A辑),2006,26(6):906-916. 被引量:1
  • 8Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978.
  • 9Falk R S, Osborn J E. Error estimates for mixed methods. RAIRO Numer Anal, 1980, 14:249-277.

二级参考文献11

  • 1罗振东,有限元混合法理论基础及其应用-发展与应用,1995年
  • 2Alonso A. Error estimators for the mixed method. Numer Math, 1996, 74:385-395
  • 3Arnold D N, Brezzi F, Douglas Jr J. A new finite element for plane elasticity. Jap J Appl Math, 1984,104(1): 347-367
  • 4Arnold D N, Douglas Jr J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45:1-22
  • 5Brezzi F, Douglas Jr J, Marini L D. Recent Results oil Mixed Finite Element Methods for Second Order Elliptic Problems. In Vistas in Applied Mathematics, Numerical Analysis, Atmospheric Sciences and Immunology. New York: Springer, 1986
  • 6Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer, 1991
  • 7Carstensen C. A posteriori error estimates for mixed finite element method. Math Comp, 1997, 66:465-476
  • 8Carstensen C, Dolzmann G. A posteriori error estimates for mixed FEM in elasticity. Numer Math, 1998,81:187-209
  • 9Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
  • 10Falk R S, Osborn J E. Error estimates for mixed methods. RAIRO Numer Anal, 1980, 14:249-277

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部