期刊文献+

受恒力作用的相对论粒子的动力学方程的解(英文) 被引量:2

A Simple Solution to the Dynamic Equation for a Relativistic Particle Acted by a Constant Force
下载PDF
导出
摘要 用一种简洁的数学形式给出了受恒力作用的粒子的相对论动力学方程的解,解决了相对论中的抛体运动问题,详细讨论了相对论粒子的加速度、速度和运动方程与牛顿力学中对应物理量的区别和联系. A concise solution to the dynamic equation for a relativistic particle acted by a constant force is presented,which is corresponding to the projectile motion in special relativity,the acceleration,velocity and equation of motion are expressed by easy functions,the differences and relations between special relativity and Newton's Mechanics are analyzed in detail.
作者 黄时中 方燕
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2011年第5期432-436,共5页 Journal of Anhui Normal University(Natural Science)
基金 Supported by Scientific Research Foundation of the State Human Resource Ministry for Returned Chinese Scholars under Grant No.2005LXAH06 Natural Science Foundation of Anhui Province under Grant No.11040606 M15
关键词 狭义相对论 动力学方程 抛体运动 special relativity dynamic equation solution projectile motion
  • 相关文献

参考文献14

  • 1FRENCH A P. Special relativity. (MIT Introductory Physics Series) [M] . New York: CRC, 1968:231-250.
  • 2SERWAY R A, MOSES C J, MOYER C A. Modem physics[M]. New York: Thomson, 1997 : 1 - 144.
  • 3MCGERVEY J D. Introduction to modem physics[M]. New York: Academic, 1983:77 - 82.
  • 4EISBERG R M. Fundamentals of modem physics[M]. New York: Wiley, 1967:128-134.
  • 5EUGENE Hecht. How Einstein confirmed E0 = mc2 [J]. Am J Phys,2011,79(6) :591 - 595.
  • 6OKUN L B. The einstein formula E0 = mc2, Isn' t the Lord laughing? [J ]. Physies-Uspekhi, 2008,51 (5) : 513 - 527.
  • 7HU Y Ben. Relativistic momentum and kinetic energy, and E = mc2n [J]. Eur J Phys, 2009,30:325 - 330.
  • 8ENZO Zanchini. Mass, momentum and kinetic energy of a relativistic particle[J]. Eur J Phys, 2010,31 : 763 - 773.
  • 9黄时中,李淑贞,褚进民.类氢离子电离能的相对论性计算[J].安徽师范大学学报(自然科学版),2010,33(2):121-124. 被引量:5
  • 10王大理,黄时中.锂原子基态相对论能量的理论计算[J].安徽师范大学学报(自然科学版),2007,30(2):136-138. 被引量:3

二级参考文献18

共引文献6

同被引文献15

  • 1汪德新.相对论力学对恒力作用下质点运动的讨论[J].大学物理,1994,13(3):19-20. 被引量:10
  • 2FRANKOWSKI K, PEKERIS C F. Logarithmic terms in the wave functions of the ground state of two-electron atoms[J]. Phys Rev 1966, 146:46.
  • 3ACCAD Y, PEKERIS C L, SCHIFF B. Two-electron S and P term values with smooth Z dependence[J]. Phys Rev A, 1975,11 z 1479.
  • 4FREUND D E, HUXTABLE B D, MORGAN J D. Variational calculations on the helium isoelectronie sequence[J]. Phys Rev A, 1984,29: 980.
  • 5THAKKAR A J, KOGA T. Ground-state energies for the helium isoelectronic series[J]. Phys Rev A, 1994,50:854.
  • 6GOLDMAN S P. Uncoupling correlated calculations in atomic physics: Very high accuracy and ease I J]. Phys Rev A, 1998, 57:R677.
  • 7KOROBOV V I. Nonrelativistie ionization energy for the helium ground state[J]. Phys Rev A, 2002,66:024501.
  • 8FORREY R C. Compact representation of helium wave functions in perimetric and hyperspherical coordinates [ J ]. Phys Rev A, 2004, 69: 022504.
  • 9TRIPATHY D N, PADHY B, RAID K. Two-parameter wavefunction for the ground state of the helium isoelectronic sequence[J]. J Phys B,1995,28:IA1.
  • 10DAVID C W. Compact 1 1S helium wave functions[J]. Phys Rev A,2006,74:014501.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部