期刊文献+

血红蛋白在SWCNTs-CTAB修饰电极上的直接电化学和电催化研究

Direct Electrochemistry and Electrocatalysis of Hemoglobin on SWCNTs-CTAB Modified Electrode
下载PDF
导出
摘要 利用血红蛋白(Hb)结合单壁碳纳米管(SWCNTs)-十六烷基三甲基溴化铵(CTAB)制备纳米复合物修饰到玻碳电极(GCE)表面,并研究了电极上Hb的直接电化学和电催化行为.用紫外可见光谱(UV-Vis)检测键合到电极表面的Hb,可知复合膜中的Hb保持了类似于本体环境中的亚结构.通过电化学实验可知,复合膜中的Hb表现出了表面控制的可逆的直接电子转移反应.得到了标准式电位(Eθ')和表面覆盖度(Γ*)等电化学参数.在7.00×10-5mol L-1-1.26×10-3mol L-1范围内(R=0.9983,n=18)内,Hb-SWCNTs-CTAB修饰电极对过氧化氢(H2O2)表现出较好的催化还原活性,得检测限为1.96×10-5(S/N=3).该传感器具有良好的稳定性和重现性,可用于H2O2的测定. The direct electrochemistry and electrocatalysis of hemoglobin(Hb) were investigated with the protein incorporated in the nanocomposite film of single walled carbon nanotubes(SWCNTs)-cetylramethy-lammonium bromide(CTAB) immobilized on the surface of a glassy carbon electrode(GCE).The incorporated hemoglobin was characterized using ultraviolet visible(UV-Vis) spectroscopy,indicating the hemoglobin in SWCNTs-CTAB nanocomposite film keeps its secondary structure similar to its native state.The reactions on the surface of GCE showed a surface-controlled process with a single proton transfer at the scan rate range from 10 to 500 mV/s.According to the electrochemical methods,a series of electrochemical parameters such as formal potentials(Eθ') and apparent heterogeneous electron transfer rate constants(ks) were obtained.Moreover,the Hb-SWCNTs-CTAB electrode showed excellent electrocatalytic activities for the reduction of H2O2 ranging from 7.00×10-5mol L-1-1.26×10-3mol L-1(R=0.9983,n=18) with a detection limit of 1.96×10-5(S/N=3).Furthermore,the biosensor possessed good stability and reproducibility and could be used to determine the concentration of H2O2.
出处 《漳州师范学院学报(自然科学版)》 2011年第3期45-50,63,共7页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省教育厅科技项目(JA09163) 漳州师范学院科研基金(L20779) 漳州师范学院研究生教育创新基地资金资助
关键词 单壁碳纳米管 血红蛋白 十六烷基三甲基溴化铵 生物传感器 Single-wall carbon nanotubes Hemoglobin Cetylramethylammonium bromide Biosensor
  • 相关文献

参考文献28

  • 1M. F. Chaplin, C. Bucke. Enzyme Technology[M]. UK: Cambridge University Press, 1990.
  • 2F. A. Armstrong, H. A. O. Hill, N. J.Walton. Direct electrochemistry of redox proteins[J]. Acc. Chem. Res., 1988, 21(11): 407-413.
  • 3D. M. Sun, C. X. Cai, X. G Li, X. Wang, H. Li. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon[J]. J. Electroanal. Chem., 2004, 566(2): 415-421.
  • 4X. J. Han, W. M. Huang, J. B. Jia, S. J. Dong, E. K. Wang. Direct electrochemistry of hemoglobin in egg phosphatidylcholine films and its catalysis to H2O2[J]. Biosens. Bioelectron., 2002, 17(9): 741-746.
  • 5Q. Zhang, Z. Q. Lu, J. F. Rusling. Composite Films of Surfactants, Nation, and Proteins with Electrochemical and Enzyme Activity[J]. Langmuir, 1996, 12(22): 5472-5480.
  • 6J. F. Rusling, A. E. F. Nassar. Enhanced electron-transfer for myoglobin in surfactant films on electrodes[J]. J. Am. Chem. Soc., 1993, 115(25): 11891-11897.
  • 7Z. Zhang, S. Chouchane, R. S. Magliozzo, J.F. Rusling. Direct Voltammetry and Catalysis with Mycobacterium tuberculosis Catalase-Peroxidase, Peroxidases, and Catalase in Lipid Films[J]. Anal. Chem., 2002, 74(I): 163-170.
  • 8H. Chen, S. Dong. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol gel-derived ceramic carbon nanotube nanocomposite film[J]. Biosens. Bioelectron., 2007, 22(8): 1811 - 1815.
  • 9Y. X. Sun, J. T. Zhang, S. W. Huang, S. F. Wang. Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film[J]. Sens. Actuators B: Chem., 2007, 124(2): 494-500.
  • 10L. Shen, R. Huang, N. F. Hu. Myoglobin in polyacrylamide hydrogel films: direct electrochemistry and electrochemical catalysis[J]. Talanta, 2002, 56(6): 1131-1139.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部