期刊文献+

基于滞回耗能谱的钢板剪力墙结构性态设计方法 被引量:18

Performance based seismic design of steel plate shear walls using hysteretic energy spectrum
原文传递
导出
摘要 结构在地震作用下的损伤往往与地面运动的加速度循环特征密切相关,为反映这种地面运动特征,引入了累积延性比,并结合标准化的滞回耗能谱,提出了钢板剪力墙(SPSW)结构基于能量的性态抗震设计方法。该方法给出了SPSW结构中钢梁、钢柱、剪力墙板累积滞回耗能的计算方法,引入捏缩系数来反映构件的滞回特性,采用能力设计方法确定剪力墙板周边的梁、柱截面,确保SPSW结构在罕遇地震作用下出现理想的塑性机构。通过对1榀10层3跨的SPSW结构算例分析,采用弹塑性时程分析对所设计结构进行了验证。计算结果表明:结构最大楼层侧移平均值满足我国现行抗震规范的要求,与设计假定的目标侧移基本一致,验证了建议方法的合理性。 The damages of buildings under earthquakes are related to cumulative effects of the ground motion.In order to reflect the ground motion effect,an energy-based seismic design method of steel plate shear wall,based on the normalized hysteretic energy spectrum and accumulated ductility spectrum,was proposed.The computation methods for accumulated hysteretic energy of steel beam,steel column,and steel plate infill wall were constructed.The different hysteretic behavior of steel components was taken into consideration by pinching parameters.Capacity design method was used to determine the sections of steel components,and to ensure that SPSW could produce the favorite failure mode under rare earthquakes.A ten-story,three-span SPSW was designed based on this new design method.The seismic behavior was evaluated by nonlinear time history method.The maximum average story drift of the example SPSW structure can meet the requirement of the Chinese seismic code.The reliability of this method is proved.
出处 《建筑结构学报》 EI CAS CSCD 北大核心 2011年第11期126-133,共8页 Journal of Building Structures
基金 国家自然科学基金项目(50978175) 江苏省高校自然科学基金项目(10KJB560004)
关键词 钢板剪力墙结构 性态设计 滞回耗能谱 累积延性比谱 steel plate shear wall structure performance based seismic design hysteretic energy spectrum accumulated ductility spectrum
  • 相关文献

参考文献14

  • 1Leelataviwat S, Goel S C, Stojadinovie B. Energy- based seismic design of structures using yield mechanism and target drift [ J ]. Journal of Structural Engineering, ASCE, 2002, 128(8) : 1046-1054.
  • 2Ghosh S, Adam F, Das A. Design of steel plate shear walls considering inelastic drift demand [ J ]. Journal of Constructional Steel Research, 2009, 65 (7) : 1431- 1437.
  • 3Park Y J, Ang A H. Mechanistic seismic damage model for reinforced concrete [ J ]. Journal of Structural Division, ASCE, 1985, 111(4) :740-757.
  • 4Cosenza E, Manfredi G. Seismic design based on low cycle fatigue criteria [ C ]// Proceeding of 11th World Conference on Earthquake Engineering. Acapulco, Mexico: Elsevier Science Ltd, 1996: 1141.
  • 5Teran-Gilmore A, Jirsa J Q. A damage model for practical seismic design that accounts for low cycle fatigue[ J]. Earthquake Spectra, 2005, 21 (3) : 803-832.
  • 6Jinkoo Kim, Hyunhoon Choi. Energy-based seismic design of structures with bucking-restrained braces [ J ]. Steel and Composite Structures, 2004, 4(6) :437-452.
  • 7Hyunhoon Choi, Jinkoo Kim. Energy-based seismic design of bucking-restrained braced frames using hysteretic energy spectrum[J]. Engineering Structures, 2006,28(2) :304-311.
  • 8Teran-Gilmore A, Avila E, Rangel G. On the use of plastic energy to establish strength requirements in ductile structures[J]. Engineering Structures, 2003,25 (7) :965-980.
  • 9Teran-Gilmore A, Jirsa J Q. The concept of cumulative ductility strength spectra and its use within performance- based seismic design [ J ]. ISET Journal of Earthquake Technology, 2004, 41 ( 1 ) : 183-200.
  • 10Bruneau M, Wang N. Some aspects of energy methods for the inelastic seismic response of ductile SDOF structures[J]. Engineering Structures, 1996, 18 ( 1 ) : 1-12.

共引文献7

同被引文献212

引证文献18

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部