期刊文献+

非全局Lipschitz条件下随机延迟微分方程Euler方法的收敛性 被引量:1

CONVERGENCE OF EULER METHODS FOR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS UNDER NON-GLOBAL LIPSCHITZ CONDITIONS
原文传递
导出
摘要 大多数随机延迟微分方程数值解的结果是在全局Lipschitz条件下获得的.许多延迟方程不满足全局Lipschitz条件,研究非全局Lipschitz条件下的数值解的性质,具有重要的意义.本文证明了漂移系数满足单边Lipschitz条件和多项式增长条件,扩散系数满足全局Lipschitz条件的一类随机延迟微分方程的Euler方法是1/2阶收敛的. Most of the existing results on the numerical solutions for the stochastic delay differ- ential equations (SDDEs) are proved under the global Lipschitz conditions. However, there are many SDDEs that don't satisfy the global Lipschitz conditions. It is interesting to study the property of the numerical solutions for the SDDEs under the non-global Lipschitz conditions. In this paper, we prove that the Euler methods for SDDEs converge with the order 1/2 when the drift coe^cient function satisfies the one-sided Lipschitz conditions and the polynomial growth conditions and the diffusion coefficient function satisfies the global Lipschitz conditions.
出处 《计算数学》 CSCD 北大核心 2011年第4期337-344,共8页 Mathematica Numerica Sinica
基金 国家自然科学基金项目(No.10901036) 福建省自然科学基金计划项目(No.2011J01016) 福建省教育厅科技项目(No.JA11204)
关键词 随机延迟微分方程 EULER方法 单边LIPSCHITZ条件 多项式增长条件 Stochastic delay differential equations Euler methods One-sided Lipschitz conditions Polynomial growth conditions
  • 相关文献

参考文献5

  • 1Baker C T H, Buckwar E. Numerical analysis of explicit one-step methods for stochastic delay differential equations[J]. LMS Journal of Computation and Mathematics, 2000, 3: 315-335.
  • 2Buckwar E. Introduction to the numerical analysis of stochastic delay differential equations[J]. Journal of Computational and Applied Mathematics, 2000, 125(1-2): 297-307.
  • 3Mao X R. Numerical solutions of stochastic differential delay equations under local Lipschitz condition[J]. Journal of Computational and Applied Mathematics, 2003, 151(1): 215-227.
  • 4Mao X R. Exponential stability of stochastic differential equations[M]. New York: Marcel Dekker, 1994.
  • 5Mao X R. Stochastic differential equations and their applications[M]. New York: Horwood Publishing Limited, 1997.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部