摘要
对求解极大相关问题的P-SOR方法的收敛性做了进一步研究.得到了一些新的收敛条件.为了提高收敛到全局最大解的可能性,提出了一种新的初始向量选择策略.给出了P-SOR算法的对称形式(P-SSOR).还给出了一种算法精化策略.最后,用数值例子说明新方法的有效性.
This paper concentrates on the convergence of the P-SOR algorithm for maximal cor- relation problems (MCP) proposed by Sun and contains four contributions. Several new results on the convergence of the P-SOR method are obtained. To increase the probability of finding a global maximizer, a new staring point strategy is proposed. A so-called P-SSOR algorithm is presented and shown that the new algorithm is less sensitive to the selection of the relaxation parameter w than P-SOR algorithm. Finally, a refining strategy to compute the global maximizer is suggested. Some numerical examples are carried out to demonstrate the efficiency of the new algorithm with the new starting point strategy.
出处
《计算数学》
CSCD
北大核心
2011年第4期345-356,共12页
Mathematica Numerica Sinica
基金
国家自然科学基金(10971204
11071228)
国家科技重大专项(2008ZX05025-001-006)部分资助
关键词
典型相关分析
极大相关问题
多元特征值问题
P—SOR算法
松弛因子
初始点策略
收敛性
Canonical correlation analysis
Maximal correlation problem
Multivariate eigenvalue problem
P-SOR algorithm
the relaxation parameter
starting point strategy
convergence