期刊文献+

种群动力系统的数值解的振动性分析 被引量:6

OSCILLATION ANALYSIS OF NUMERICAL SOLUTIONS FOR NONLINEAR DELAY DIFFERENTIAL EQUATIONS OF POPULATION DYNAMICS
原文传递
导出
摘要 本文主要研究下面动力系统的非线性延迟微分方程x′(t)+αV_mx(t)x^p*(t-τ)/(β~p+x^p(t-τ))=λ,t≥0数值解的振动性.这是由Mackey和Glass提出来的关于动力系统疾病的方程.本文得到了数值方法振动的条件.同时对非振动的数值解的性质也做了研究,为了验证得到的结果,给出了数值算例. This paper is concerned with oscillations of numerical solutions for the nonlinear delay differential equation of population dynamics x'(t)+αVmx(t)x^p(t-τ)/β^p+x^p(t-τ)=λ,t≥0 The equation proposed by Mackey and Glass for a "dynamic disease". Some conditions under which the numerical method is oscillatory are obtained. The properties of non-oscillatory numerical solutions are investigated. To verify our results, we give numerical experiments.
出处 《计算数学》 CSCD 北大核心 2011年第4期357-366,共10页 Mathematica Numerica Sinica
基金 黑龙江省教育厅科学技术研究项目(11551136)
关键词 振动 非线性 延迟微分方程 数值方法 动力系统 oscillation nonlinear delay differential equations numerical methods pop- ulation dynamics
  • 相关文献

参考文献14

  • 1Mackey M C, Glass L. Oscillation and chaos in physiological control system[J]. Science, 1977, 197: 287-289.
  • 2Kong Q. Oscillation and asymptotic behavior of a discrete logistic model[J]. Rocky Mount. J. Math., 1995, 25: 339-349.
  • 3Liang H Y, Li Q L, Zhang Z G. New oscillatory criteria for higher-order nonlinear neutral delay differential equation[J]. Nonlinear Analysis TMA., 2008, 69: 1719-1731.
  • 4Peng D H, Han M A, Wang H Y. Linearized oscillations of first-order nonlinear neutral delay difference equations[J]. Comput. Math. Appl., 2003, 45: 1785-1796.
  • 5Saker S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales[J]. J. Comput. Appl. Math., 2006, 187: 123-141.
  • 6Sun Y G, Saker S H. Oscillation for second-order nonlinear neutral delay difference equations[J]. Appl. Math. Comput., 2005, 163: 909-918.
  • 7Zaghrout A, Ammar A, El-Sheikh M M A. Oscillation and global attractivity in delay equation of population dynamics[J]. Appl. Math. Comput., 1996, 77: 195-204.
  • 8Liu M Z, Gao J F, Yang Z W. Oscillation analysis of numerical solution in the θ-methods for equation x'(t) + ax(t) + alx([t - 1]) = 0[J]. Appl. Math. Comput., 2007, 186: 566-578.
  • 9Liu M Z, Gao Jianfang, Yang Z W. Preservation of oscillations of the Runge-Kutta method for equation x'(t) + ax(t) + alx([t - 1]) = 0[J]. Comput. Math. Appl., 2009, 58: 1113-1125.
  • 10Kubiaczyk I, Saker S H. Oscillation and stability in nonlinear delay differential equations of population dynamics[J]. Math. Comput. Model., 2002, 35: 295-301.

同被引文献3

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部