摘要
本文主要研究下面动力系统的非线性延迟微分方程x′(t)+αV_mx(t)x^p*(t-τ)/(β~p+x^p(t-τ))=λ,t≥0数值解的振动性.这是由Mackey和Glass提出来的关于动力系统疾病的方程.本文得到了数值方法振动的条件.同时对非振动的数值解的性质也做了研究,为了验证得到的结果,给出了数值算例.
This paper is concerned with oscillations of numerical solutions for the nonlinear delay differential equation of population dynamics x'(t)+αVmx(t)x^p(t-τ)/β^p+x^p(t-τ)=λ,t≥0 The equation proposed by Mackey and Glass for a "dynamic disease". Some conditions under which the numerical method is oscillatory are obtained. The properties of non-oscillatory numerical solutions are investigated. To verify our results, we give numerical experiments.
出处
《计算数学》
CSCD
北大核心
2011年第4期357-366,共10页
Mathematica Numerica Sinica
基金
黑龙江省教育厅科学技术研究项目(11551136)
关键词
振动
非线性
延迟微分方程
数值方法
动力系统
oscillation
nonlinear
delay differential equations
numerical methods
pop- ulation dynamics