期刊文献+

四阶强阻尼波动方程的混合控制体积法 被引量:6

MIXED COVOLUME METHODS FOR FOURTH-ORDER HEAVY DAMPING WAVE EQUATION
原文传递
导出
摘要 本文利用混合控制体积方法在三角网格剖分下求解四阶强阻尼波动方程.通过使用最低阶Raviart-Thomas混合有限元空间和引入迁移算子把解函数空间映射成试探函数空间,构造了半离散和全离散的混合控制体积格式,得到了最优阶误差估计. The mixed covolume method is analyzed for semilinear fourth-order damping wave e- quation on triangular grids. Semi-discrete and fully-discrete mixed covolume schemes are constructed by using the lowest order Raviart-Thomas mixed finite element space and introducing a transfer operator γh that maps the trial function space into the test function space, and optimal error estimates are derived.
出处 《计算数学》 CSCD 北大核心 2011年第4期409-422,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金(11061021) 内蒙古高校科学研究项目(NJ10006)
关键词 四阶强阻尼波动方程 混合控制体积方法 全离散格式 最优阶误差估计 Fourth-order damping wave equation Mixed covolume method Fully- discrete scheme Optimal error estimate
  • 相关文献

参考文献19

  • 1刘洋,李宏.四阶强阻尼波方程的新混合元方法[J].计算数学,2010,32(2):157-170. 被引量:19
  • 2Li R H, Chen Z Y, Wu W. Generalized Difference Methods for Differential Equations Numerical Analysis of Finite Volume Methods[M]. New York: Marcel Dekker Inc., 2000.
  • 3杨旻,袁益让.非线性对流扩散方程沿特征线的多步有限体积元格式[J].计算数学,2004,26(4):484-496. 被引量:4
  • 4Kumar S, Nataraj N, Pani A K. Finite volume element method for second order hyperbolic equations[J]. Int. J. Numer. Anal. Model., 2008, 5(1): 132-151.
  • 5李焕荣,罗振东,李潜.二维粘弹性问题的广义差分法及其数值模拟[J].计算数学,2007,29(3):251-262. 被引量:11
  • 6Chen C J, Liu W. A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations[J]. J. Comput. Appl. Math., 2010, 233: 2975-2984.
  • 7王同科.一类二维粘性波动方程的交替方向有限体积元方法[J].数值计算与计算机应用,2010,31(1):64-75. 被引量:5
  • 8Russell T F. Rigorous block-centered discretizations on irregular grids: improved simulation of complex reservoir systems[R]. Technical Report No. 3, Project Report, Reservoir Simulation Research Corporation, 1995.
  • 9Cai Z, Jones J E, Mccormick S F, Russell T F. Control-volume mixed finite element methods[J]. Comput. Geosci., 1997, 1: 289-315.
  • 10Jones J E. A Mixed finite volume element method for accurate computation of fluid velocities in porous media[D]. Ph.D. thesis, University of Colorado, Denver, CO, 1995.

二级参考文献45

共引文献35

同被引文献49

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部