摘要
为了揭示涡流二极管内三维强旋流动的特性与其阻抗性能的关系,进一步提高涡流二极管正反向流动阻抗比,本文采用Reynolds应力模型对涡流腔内非对称强旋转湍流流动进行了数值模拟,分析了腔内矢量场与标量场的分布特性,基于涡流腔内的涡量分析,得到了涡流腔内旋流的强制涡与自由涡结构及各自区域范围,并研究了涡流腔径宽比对整体性能的影响,为涡流二极管的结构设计提供参考依据。
In order to investigate the relationship between the characteristic of three-dimensional strong rotational flow in vortex diode and its impedance performance, increase the impedance ratio of forward and reverse flow, CFD simulations with Reynolds Stress model were carried out on the unsymmetrical strong rotational turbulent flow in chamber of vortex diode. The structure of forced vortex and free vortex in chamber and their distribution scope were revealed through the analysis of vector field, scalar field and vorticity in the chamber. What ever, the influence on vortex diode comprehensive performance by the ratio of diameter and height of chamber were studied. The results provide some theoretical basis for optimizing the vortex diode.
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2011年第11期1855-1858,共4页
Journal of Engineering Thermophysics
基金
国家自然科学基金项目资助(No.51006087
No.50979095)
关键词
涡流二极管
强旋湍流
流动阻抗比
数值模拟
vortex diode
strong rotational turbulent flow
impedance ratio
numerical simulation