期刊文献+

密度锁反向启动特性实验研究 被引量:1

Experimental Study on Reverse Startup Characteristics of Density Lock
原文传递
导出
摘要 实验研究了密度锁反向启动特性,结果表明:启动流量是影响密度锁反向启动过程的关键因素,启动流量偏离平衡流量较小时,余热排出回路反向流量较小,依靠系统本身具有的自稳定性,将很快建立密度锁内水力平衡关系;而启动流量偏离平衡流量较大时,由于余热排出回路流量较大,较多冷却水进入主回路,导致加热水箱入口温度降低,入口温度的降低对密度锁水力平衡关系的建立具有一定的抑制作用,因此反向启动过程中最好避免这一现象的发生。 Reverse startup characteristics of density that the key factor of reverse startup process is the lock are studied experimentally, and it is shown startup mass flow, when the mass flow is more closer to the equivalent one, the reverse mass flow is smaller in residual heat removal loop, and the hydraulic balance in density lock will be built by self-balance characteristic of the system; While when the mass flow is less closer to the equivalent one, because of the larger mass flow and more cold wanter enters into primary loop, the entrance temperature of heat tank becomes lower which restrains hydraulic balance built in density lock, so the phenomena should be avoided during startup process.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第11期1881-1884,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50776022)
关键词 密度锁 水力平衡 反向启动 density lock hydraulic balance reverse startup
  • 相关文献

参考文献9

  • 1Kaxe H. The PIUS Pressurized Water Reactor: Aspects of Plant Operation and Availablity [J]. Nuclear Safty, 1989, 82:56 63.
  • 2Takayuki M, Tatsuya I. The Inherentlsafe Fluidized-Bed Boiling Water Reactor Concept [J]. Ann nucl Energy, 1990, 17(9): 487-492.
  • 3Griboriev O G, Leonchyk MP. IRIS: Minimizing Internal Energy Accumulated in the Primary Circuit of an Integral PIUS Type PWR With Natural Circulation [C]// Proceeding of a Technical Committee Meeting. Vienna, Austria: International Atomic Energy Agency, 1995:119 122.
  • 4Cinotti L, Rizzo F L. The Inherently Safe Immersed System(ISIS) Reactor [J]. Nuclear Engineering and Design, 1993, 143:295-300.
  • 5吕襄波,阎昌琪,孙立成.密度锁在反应堆非能动安全中的作用分析[J].核动力工程,2005,26(6):605-608. 被引量:5
  • 6Katsuhiro H, Kanji T, Yutaka K. The Simulation Test to Start Up the PIUS-Type Reactor From Isothermal Fluid Condition [J]. Journal of Nuclear and Technology, 1995, 32(9): 846-854.
  • 7Takahiro I, Tesuya K, Fumiyoshi N, et al. Thermal- Hydradulic Experiment of an Advanced PIUD-Type Reactor[C]// International Conference on Nuclear Engineering, Volume2. New Orleans, Louisiana, ASME, 1996:163-170.
  • 8Takahiro I, Yoshiyuki T, Masayoshi T, et al. Recoupling and Decoupling of Parrel Loops in Simulated PIUS-Type Reactor Shoutdown and Restart Transients [J]. Journal of Nuclear and Technology, 1997, 34(11): 1067-1078.
  • 9谷海峰,阎昌琪,王升飞,孙福荣.密度锁内水力平衡建立方法的实验研究[J].哈尔滨工程大学学报,2009,30(11):1234-1238. 被引量:2

二级参考文献15

  • 1BABALA D. Pressurized water reactor inherent core protection by primary system thermohy-draulics [ J ]. Nuclear Science and Engineering, 1985, 90(3): 400-410.
  • 2JUHN PE, KUPITZ J, CLEVELAND J, et al. IAEA activities on passive safety systems and overview of international development[J].Nuclear Engineering and Design, 2000, 201 (48) : 49-54.
  • 3MEHEDINTEANU S. An application of the new Way to precent core melting in pressure tube reactors (CANDU type)[J]. Annals of Nuclear Energy, 2001, 28( 1 ) : 79-88.
  • 4MIZUNO T, ITO T, OHTA K. The inherently-safe fluidized-bed boiling water reactor concept[ J ]. Annals of Nuclear Energy, 1990, 17(9) : 487-492.
  • 5HAGA K, TASAKA K, KUKITA Y. The simulation test to start up the PIUS-type reactor from isothermal fluid condition [ J]. Journal of Nuclear Science and Technology, 1995,32 (9) : 846-854.
  • 6TASAKA K, IMAI S, MASAOKA H, et al. Feedback control of a primary pump for safe and stable operation of a PlUS-type reactor [J]. Nuclear Engineering and Design, 1993, 144(2) : 345-352.
  • 7ITO T, TSUJI Y, TAMAKI M,et al. Recoupling and decoupiing of parallel loops in simulated PIUS-type reactor shutdown and restart transients [ J ]. Journal of Nuclear Science and Technology, 1997,34( 11 ) : 1067-1078.
  • 8SIBAMOTO Y, YONOMOTO T, KUKITA Y. Dynamic response of hot/cold liquid interfaces to pump speed perturbations in a thermal-hydraulic loop simulating a PlUS-type reactor [J].Journal of Nuclear Science and Technology, 1996, 33(9) : 703-711.
  • 9Juhn P E, Kupitz J, Cleveland J. IAEA Activities on Passive Safety Systems and Overview of International Development [J]. Nuclear Engineering and Design, 2000, 201(48): 49 - 54.
  • 10崔广余译.当代压水堆核电站发展新趋势(第一版)[M].北京:机械工业出版社,1997.259-268.

共引文献5

同被引文献56

  • 1卢川,张勇,鲁剑超,董化平.基于CFD方法的自然循环反应堆冷却剂流动特性分析[J].核动力工程,2012,33(S1):111-114. 被引量:5
  • 2黄代顺,蒋孝蔚,余红星.非能动安全壳冷却系统CFD冷凝和蒸发模型研究[J].核动力工程,2013,34(S1):188-191. 被引量:7
  • 3彭斯亮,侯玉林.自然循环余热锅炉的安装[J].能源与节能,2014,0(2):143-144. 被引量:2
  • 4阎昌琪,曹夏听.核反应堆安全传热[M].哈尔滨:哈尔滨工程大学出版社,2010.
  • 5秦立新.新一代"水下幽灵"若隐若现[N].解放军报,2013-05-02.
  • 6Sun L, Sun L C, Yan C Q, et al. Conceptual Design and Analysis of a Passive Residual Heat Removal System for a 10MW Molten Salt Reactor Experiment [ J ]. Progress in Nuclear Energy ,2014,70 ( 11 ) : 149 -158.
  • 7Min B Y, Park H S, Shin Y C, et al. Experimental Verification on the Integrity and Performance of the Passive Residual Heat Removal System for a SMART Design with VISTA-ITL[ J ]. Annals of Nuclear Ener- gy,2014,71 (9) :118 - 124.
  • 8Nitin M, Jyeshtharaj B J, Arun K N, et al. Numerical Investigation of Three-dimensional Natural Circulation Phenomenon in Passive Safety Systems for Decay Heat Removal in Large Pools [ J ]. International Journal of Heat and Mass Transfer,2015,81 ( 2 ) :659 - 680.
  • 9Yu Y, Niu F L, Wang S F, et al. One-dimensional Model for Containment in APIO00 Nuclear Power Plant Based on Thermal Stratification [ J ]. Applied Thermal Engineering,2014,70 ( 9 ) :25- 32.
  • 10Cheng X,Erbaeher F J, Neitzel H J. Passive Contain- ment Cooling by Natural Air Convection and Thermal Radiation after Severe Accidents [ J]. Nuclear Engi- neering and Design,2000,202(12) : 219-229.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部