期刊文献+

新型CaO/MgO高温CO_2吸收剂的循环反应特性 被引量:3

Cyclic Reaction Characters of Novel CaO/MgO High Temperature CO_2 Sorbents
原文传递
导出
摘要 本文采用3种方法制备了新型复合CaO/MgO吸收剂,考察了不同制备方法对复合钙基吸收剂碳化/煅烧循环反应性能的影响。结果表明,不同制备方法能决定了钙基吸收剂中CaO颗粒与MgO颗粒在微观层面上的不同均匀混合程度,因此得到吸收剂的性能差异巨大。采用溶胶凝胶燃烧合成法制备的CaO/MgO吸收剂的性能明显优于其他两种常见方法制备的吸收剂。通过该方法制备的CaO与MgO的摩尔比为4:1的吸收剂在多次循环后拥有最高的CO_2吸收容积,在循环反应中保持了良好的抗烧结性能。 The novel synthetic CaO/MgO sorbents were prepared by three methods, and the effects of different preparation methods on the cyclic carbonation/calcination reaction performance of the synthetic Ca-based sorbents were investigated in this study. The results show that the different preparation methods dominate the mixing degree of CaO grains and MgO grains at the microscopic level in the Ca-based sorbents, leading to the wide different behavior of the sorbents. The performance of the CaO/MgO sorbent made by sol-gel-combustion-synthesis method is much better than that of the sorbents made by the other two normal methods. The sorbent with a molar ratio of CaO to MgO of 4:1 made by this method, which has a good behavior of anti-sintering during cyclic reactions, achieves the highest CO2 adsorption capacity after multiple cycles.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第11期1957-1960,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50936001 No.51021065) 国家重点基础研究发展计划资助项目(No.2011CB707301)
关键词 CAO MGO CO2捕捉 碳化/煅烧 CaO MgO CO2 capture carbonation/calcination
  • 相关文献

参考文献9

  • 1Hughes R W, Lu D, Anthony E J, et al. Improved Long- Term Conversion of Limestone-Derived Sorbents for in Situ Capture of CO2 in a Fluidized Bed Combustor [J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5529-5539.
  • 2Romeo L M, Abanades J C, Escosa J M, et al. Oxyfuel Carbonation/Calcination Cycle for Low Cost CO2 Capture in Existing Power Plants [J]. Energy Conversion and Management, 2008, 49(10): 2809-2814.
  • 3Manovic V, Anthony E J. Thermal Activation of CaO- Based Sorbent and Self-Reactivation During CO2 Capture Looping Cycles [J]. Environmental Science & Technology, 2008, 42(11): 41704174.
  • 4Albrecht K O, Wagenbach K S, Satrio J A, et al. Development of a CaO-Based CO2 Sorbent With Improved Cyclic Stability [J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7841-7848.
  • 5LIU Wenqiang, FENG Bo, WU Yueqin, et al. Synthesis of Sintering-Resistant Sorbents for CO2 Capture [J]. Environmental Science & Technology, 2010, 44(15): 3093-3097.
  • 6Smithson G L, Bakhshi N N. Kinetics and Mechanism of Carbonation of Magnesium Oxide Sslurries [J]. Industrial Engineering Chemistry Process Design and Development, 1973, 12(1): 99 106.
  • 7LUO Cong, ZHENC Ying, Ding Ning, et al. Development and Performance of CaO/La2O3 Sorbents During Calcium Looping Cycles for CO2 Capture [J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 1177-11784.
  • 8冯冬晖,张立志,宋耀祖,闵敬春.薄膜的传湿性能研究[J].工程热物理学报,2009,30(3):501-504. 被引量:10
  • 9Hill K J, Winter E R S. Thermal Dissociation Pressure of Calcium Carbonate [J]. Journal of Physical Chemistry, 1956, 60(10): 1361 1362.

二级参考文献5

  • 1Marcel Mulder.膜技术基本原理[M].北京:清华大学出版社,1999..
  • 2ZHANG Li-Zhi. Evaluation of Moisture Diffusivity in Hydrophilic Polymer Membranes: A New Approach. Journal of Membrane Science, 2006, 269:75- 83.
  • 3ZHANG Li-Zhi. Fabrication of a Lithium Chloride Solu- tion Based Composite Supported Liquid Membrane and its Moisture Permeation Analysis. Journal of Membrane Science, 2006, 276:91- 100.
  • 4曾丹苓,敖越,朱克雄,等.工程热力学.第2版.北京:高等教育出版社,1986.
  • 5Jones W P. Air Conditioning Engineering. London: Edward Arnold, 1985.

共引文献9

同被引文献17

  • 1PCC. IPCC Special Report on Carbon Dioxide Capture and Storage [R). New York: Cambridge University Press, 2005-09-22.
  • 2Van den Broek M, Hoefnagels R, Rubin E. Effects of Technological Learning on Future Cost and Performance of Power Plants with CO, Capture[J].Prog. Energy Combust. Sci., 2009, 35(6): 457-480.
  • 3Manovic V, Anthony E J. Parametric Study on the CO, Capture Capacity of CaO-based Sorbents in Looping Cycles [J].Energy Fuels, 2008, 22(3): 1851-1857.
  • 4Abanades J C, Alvarez D. Conversion Limits in the Reaction of CO, with Lime[J].Energy Fuels, 2003, 17(2): 308-315.
  • 5Li Y J, Zhao C S, Qu C R. CO, Capture Using CaO Modified with Ethanol/Water during Cyclic Calcinations/Carbonation[J].Chen. Eng. Technol., 2008, 31(2): 237-244.
  • 6Zhang D F, Zhao P F, Li S G Cyclic CO, Capture Performance of Carbide Slag: Parametric Study[A]. Qi H Y, Zhao B. Cleaner Combustion and Sustainable World[C]. Berlin: Springer Berlin Heidelberg, 2013. 1329-1333.
  • 7Li Y J, Liu H L, Sun R Y. Thermal Analysis of Cyclic Carbonation Behavior ofCaO Derived from Carbide Slag at High Temperature[J].Thenn. Anal. Calorim., 2012,110(2): 685-694.
  • 8Li Z S, Cai N S, Croiset E. Process Analysis of CO, Capture from Flue Gas Using Carbonation/Calcination Cycles[J]. AIChE J., 2008, 54(7): 1912-1925.
  • 9Martavaltzi C S, Lernonidou A. Parametric Study of the CaO/Ca12Ah4033 Synthesis with Respect to High CO2 Sorption Capacity and Stability on Multicycle Operation[J]. Ind. Eng. Chern. Res., 2008,47(23): 9537-9543.
  • 10Stendardo S, Andersen L K, Herce C. Self-activation and Effect of Regeneration Conditions in CO2-Carbonate Looping with CaO-Ca12Al14O33 Sorbent[J]. Chern. Eng. J., 2013, 220: 383-394.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部